• Title/Summary/Keyword: functionalized-MWNT

Search Result 17, Processing Time 0.019 seconds

Facile Preparation of Nanosilver-decorated MWNTs Using Silver Carbamate Complex and Their Polymer Composites

  • Park, Heon-Soo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.483-488
    • /
    • 2012
  • We successfully decorated multi-wall carbon nanotubes (MWNTs) with silver by reacting Ag-NPs with thiolfunctionalized MWNT-SH. Ag alkylcarbamate complex was used as an Ag precursor. Uniform Ag-NPs (5-10 nm) were effectively prepared by microwaving within 60 s using 1-amino-4-methylpiperazine (AMP), which acts as a reaction medium, reducing agent, and stabilizer. The MWNTs were functionalized with 2-aminoethanethiol. Exploiting the chemical affinity between thiol and Ag-NPs, Ag-MWNT nanohybrids were obtained by spontaneous chemical adsorption of MWNT-SH to Ag through Ag-S bonds. The Ag-S-MWNTs were characterized by TGA, XRD, and TEM to confirm that Ag-NPs were uniformly decorated onto the MWNTs. The Ag-S-MWNTs were then employed as conducting filler in epoxy resin to fabricate electrically conducting polymer composites. The electrical properties of the composites were measured and compared with that containing MWNT-SH. The electrical conductivity of composites containing 0.4 wt % Ag-S-MWNT was four orders of magnitude higher than those containing same content of MWNT-SH, confirming Ag-S-MWNT as an effective conducting filler.

The Preparation of Multi-walled CNT-PMMA Nanocomposite

  • Seo, D.W.;Yoon, W.J.;Park, S.J.;Jo, M.C.;Kim, J.S.
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.266-270
    • /
    • 2006
  • Multi-walled carbon nanotube-poly methyl methacrylate (MWNT/PMMA) nanocomposite has been prepared by in situ polymerization of MMA dispersed with MWNTs. The MWNTs were functionalized by nitric acid and sulfuric acid treatment, and this was confirmed by FTIR spectrometer. The solution mixture of MWNTs and MMA was partially polymerized at $80^{\circ}C$, followed by the addition of AIBN and polymerization at $50^{\circ}C$. The MWNT-PMMA composite was prepared by casting the pre-polymer on the glass plate, and the optical properties have been studied using UV-vis spectrometer. The acid treated MWNTs were well dispersed in MMA with fairly good dispersion stability, while flocculation and sedimentation was observed from raw MWNTs in MMA.

  • PDF

The Dispersion Stability of Multi-Walled Carbon Nanotubes in the Presence of Poly(styrene/$\alpha-methyl$ styrene/acrylic acid) Random Terpolymer

  • Chang, Woo-Hyuck;Cheong, In-Woo;Shim, Sang-Eun;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.545-551
    • /
    • 2006
  • Aqueous dispersions of pristine and functionalized (COOH- and $NH_2$-) multi-walled, carbon nanotubes (MWNTs) were prepared by using three types of surf act ants: sodium dodecyl sulfate (SDS, anionic), PEO-PPO-PEO (Pluronic P84, non-ionic), and poly(styrene/$\alpha-methyl$ styrene/acrylic acid) random terpolymer, i.e., alkali-soluble resin (ASR). The aggregate size, $\zeta-potential$, and storage stability of the MWNT aqueous dispersions were investigated by using dynamic light scattering and the turbidity method at room temperature. The exfoliation of the MWNT aggregates was determined by a UV-visible spectrophotometer and the morphology of the surfactant-coated MWNTs was observed by transmission electron microscopy (TEM). In all cases, ASR showed better dispersion stability with the smallest aggregate size, compared with the other surfactants, because of its unique molecular structure, i.e., randomly incorporated carboxylic acid groups and planar phenyl groups that can be irreversibly and effectively adsorbed on the MWNT surface. A predominantly-exfoliated morphology of MWNTs was observed in the presence of ASR from the strong intensity of the UV-vis spectrum at 263 nm.

Electrochemical Oxidations of Alcohols on Platinum/Carbon Nanotube Composites

  • Kim, Jungsoo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.125-129
    • /
    • 2013
  • Composites of platinum and multiwalled carbon nanotubes (MWNTs) were prepared in various reduction conditions and characterized using cyclic voltammetry. The MWNTs were functionalized with carboxylic acid and/or hydroxyl groups in acidic solutions prior to the formation of MWNT-Pt composites. Platinum nanoparticles were deposited onto the chemically-oxidized MWNTs in 1-propanol and 1,3-propanediol. The reduction of Pt precursors in other solutions could induce differences in their morphologies in composite thin films. The morphologies of MWNTs with Pt deposited were dependent on the reduction solutions, and the electrocatalytic activities on alcohols changed accordingly. The electrochemical activities of the as-prepared MWNT-Pt thin films on common alcohols such as methanol and ethanol were investigated.

Surface Treatment of Multi-walled Carbon Nanotubes for Increasing Electric Double-layer Capacitance (다중벽 탄소나노튜브의 표면처리에 따른 전기이중층 커패시터의 특성)

  • Kim, Ji-Il;Kim, Ick-Jun;Park, Soo-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • In this work, the electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) were studied. Nitrogen and oxygen functional groups of the MWNTs were introduced by urea and acidic treatment, respectively. The surface functional groups of the MWNTs were confirmed by X-ray photoelectron spectroscopy (XPS) measurements and zeta-potential method. The characteristics of $N_2$ adsorption isotherm at 77 K, specific surface area, and total pore volumes were investigated by BET eqaution, BJH method and t-plot method. Electrochemical properties of the functionalized MWNTs were accumulated by cyclic voltammetry at the scan rates of 50 $mVs^{-1}$ and 100 $mVs^{-1}$ in 1M $H_2SO_4$ as electrolytes. As a result, the functionalized MWNTs led to an increase of capacitance as compared with pristine MWNTs. It was found that the increase of capacitance for urea treated MWNTs was attributed to the increase in density of surface functional groups, resulting in improving the wettability between electrode materials and charge species.

A Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids (탄소 나노튜브 나노유체의 열전도도에 대한 연구)

  • Kim, Bong-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.275-283
    • /
    • 2007
  • An experimental study was conducted to investigate the effect of the morphology of CNT (Carbon Nanotube) on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using a steady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature. Although functionalized SWNT (Single-Walled Carbon Nanotube) produced more stable and homogeneous suspensions, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0% by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT (Multi-Walled Carbon Nanotube), the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids (탄소 나노튜브 나노유체의 열전도도에 대한 연구)

  • Kim, Bong-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.168-175
    • /
    • 2006
  • An experimental study was conducted to investigate the effect of the morphology of CNT on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using asteady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature, Although functionalized SWNT produiced a more stable and homogeneous suspension, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0 percent by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT, the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

  • PDF