• Title/Summary/Keyword: functionalized graphene sheet

Search Result 6, Processing Time 0.024 seconds

Physical Properties of Functionalized Graphene Sheet/Poly(ethylene-co-vinyl acetate) Composites (관능화 그래핀 쉬트/에틸렌-비닐아세테이트 공중합체 복합재료의 물성)

  • Lee, Ki Suk;Kim, Jeong Ho;Jeong, Han Mo
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • The physical properties of functionalized graphene sheet (FGS)/poly(ethylene-co-vinyl acetate) (EVA) was examined with various kinds of EVA, having vinyl acetate (VA) contents in the range of 0 to 40 wt%. The compatibility between FGS and EVA was enhanced as the polar VA content of EVA increased. Thus, the dispersion of FGS in EVA became finer, and the decrease of surface resistivity and the increase of tensile modulus by the added FGS became more effective when the VA content of EVA was high. When the VA content was low, the elongation at break was reduced drastically by added FGS due to the poor adhesion of FGS/EVA interface. The crystallization of EVA was generally retarded by the interaction with dispersed FGS. However, when both the VA content of EVA and the added amount of FGS were low, the crystallization of EVA was enhanced, probably due to the predominant nucleating effect by FGS.

Syntheses and Characterizations of Position Specific Functionalized Graphenes (위치 선택적 관능기화 그래핀의 합성과 특성분석)

  • Heo, Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.218-224
    • /
    • 2013
  • Graphene oxide (GO) was prepared by the Hummers and Offeman method from graphite. Two different types of functionalized graphene sheets (FGSs) were synthesized by using GO. Hexamethylamine (HDA) substituted vertically to the graphene sheet (Ver-HDA-GS) was synthesized from HDA and epoxy group in GSs. Whereas, horizontally substituted hexadecanol (HDO) to the GS(Hor-HDO-GS) was synthesized from HDO and alcohol groups via reduced GO (RGO), respectively. The structures of the GO, RGO, Ver-HDA-GS, and Hor-HDO-GS were identified by Fourier transform infrared (FTIR). In addition, we examined the thermal stability and morphology. Atomic force microscope (AFM) disclosed that Ver-HDA-GS consisted of one- or two-layer graphene regions. However, the Ver-HDA-GS layers showed average thickness of 1.76 nm. The thermal stabilities of the FGSs were better than those of the GO and RGO. The Ver- HDA-GS was well dispersed in common solvents such as dimethyl sulfoxide (DMSO), toluene, chloroform, and decalin.

Synthesis of Thermally Reduced Graphene Sheets Using Poly(ionic liquid)

  • Lee, Hyun-Wook;Kim, Tae-Young;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.256-256
    • /
    • 2010
  • It is demonstrated that graphene sheets are produced via thermal reduction of graphene oxide (GO) in the presence of imidazoium-based poly (ionic liquid) (PIL). PILs plays an important role in minimizing the reduction time and dispersing graphene sheets in organic solvents. In addition, as-obtained graphene sheets are found to be functionalized with PIL molecules by the strong interaction of PIL and the graphene, as analyzed by various physical methods such as atomic force microscopy (AFM), X-ray photoelectric spectroscopy (XPS) and Raman spectroscopy. Such a strong interaction allows the successful production of graphene/PIL composites, in which their electrical properties are controllable by the loading level of graphene in the PIL matrix.

  • PDF

A Study on Synthesis of Polyurethane/Functionalized Graphene Nanocomposites by In-situ Intercalation Method (In-situ 법에 의한 폴리우레탄/기능화 된 그래핀 나노복합체의 합성에 관한 연구)

  • Hwang, Soo-Ok;Lee, Byung-Hwan;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • Graphene oxide was synthesized from natural graphite, and its surface was modified using diisocyanatodicyclohexylmethane( $H_{12}MDI$). Isocyanate-graphene sheet(i-RGO) was obtained by reduction of surface modified GO. To select nanofiller having good dispersion with polyurethane, GO, i-RGO, natural graphite and thermal reduced graphite were analyzed, and then i-RGO was selected as a suitable nanofiller. PU/i-RGO nanocomposite was synthesized with various i-RGO contents to estimate effect of reinforcement on nanocomposite. Thermal stability, hardness, contact angle were increased with i-RGO contents due to i-RGO characteristic and crosslink bridge effect. But, tensile strength and elongation were decreased at i-RGO contents more than the 4 wt%. This phenomenon was interpreted by the excess formation of crosslink bridge.

Functionalized Graphene/Polyimide Nanocomposites under Different Thermal Imidization Temperatures (열 이미드화 온도에 따른 작용기화 그래핀/폴리이미드 나노복합재료)

  • Ju, Jieun;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.88-98
    • /
    • 2015
  • 4-Amino-N-hexadecylbenzamide-graphene sheets (AHB-GSs), used in the preparation of the polyimide (PI) nanocomposite films, were synthesized by mixing a dispersion of graphite oxide with a solution of the ammonium salt of AHB. The atomic force microscope image of functionalized-GS on mica and a profile plot revealed the average thickness of AHB-GS to be ~3.21 nm. PI films were synthesized by reacting 4,4'-biphthalic anhydride and bis(4-aminophenyl) sulfide. PI nanocomposite films containing various contents of AHB-GS over the range of 0-10 wt% were synthesized using the solution intercalation method. The PI nanocomposite films under different thermal imidization temperatures, 250 and $350^{\circ}C$, were examined. The graphenes, for the most part, were well dispersed in the polymer matrix despite some agglomeration. However, micrometer-scale particles were not detected. The average thickness of the particles was <10 nm, as revealed from the transmission electron microscope images. Only a small amount of AHB-GS was required to improve the gas barrier, and electrical conductivity. In contrast, the glass transition and initial decomposition temperatures of the PI hybrid films continued to decrease with increasing content of AHB-GS up to 10 wt%. In general, the properties of the PI hybrid films heat treated at $350^{\circ}C$ were better than those of films heat treated at $250^{\circ}C$.

Functional graphene sheets-TiO2 nanocomposites and their photocatalytic performance for wastewater treatment

  • R. Aitbelale;A. Timesli;A. Sahibed-dine
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.295-304
    • /
    • 2023
  • In this paper, a powerful photocatalyst based on carbon nanocomposite is developed in order to obtain a new material applicable in water treatment and especially for the discoloration of effluents used in the textile industry. For that, TiO2-graphene nanocomposites have been successfully synthesized by a mixture of Functionalized Graphene Sheet (FGS) and tetrachlorotitanium complexes to form FGS-TiO2 nanocomposite. In the presence of an anionic surfactant, we used a new chemical process to functionalize graphene sheets in order to make them an excellent medium for blocking and preventing the aggregation of TiO2 nanoparticles. The components of these nanocomposites are characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which confirms the successful formation of the FGS-TiO2 nanocomposite. It was found that the TiO2 nanoparticles were dispersed uniformly on the graphene plane which possesses better charge separation capability than pure TiO2. The FGS-TiO2 nanocomposites exhibited higher photocatalytic activity compared to pure TiO2 for the removal of three dyes: such as Methylene Blue (MB), Bromophenol Blue (BB) and Alizarin Red-S (AR) in water. The removal process was fast and more efficient with FGS-TiO2 nanocomposite in daylight (in the absence of UV irradiation) compared to pure TiO2 nanoparticles without and under UV in all pH range.