Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.2.218

Syntheses and Characterizations of Position Specific Functionalized Graphenes  

Heo, Cheol (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.37, no.2, 2013 , pp. 218-224 More about this Journal
Abstract
Graphene oxide (GO) was prepared by the Hummers and Offeman method from graphite. Two different types of functionalized graphene sheets (FGSs) were synthesized by using GO. Hexamethylamine (HDA) substituted vertically to the graphene sheet (Ver-HDA-GS) was synthesized from HDA and epoxy group in GSs. Whereas, horizontally substituted hexadecanol (HDO) to the GS(Hor-HDO-GS) was synthesized from HDO and alcohol groups via reduced GO (RGO), respectively. The structures of the GO, RGO, Ver-HDA-GS, and Hor-HDO-GS were identified by Fourier transform infrared (FTIR). In addition, we examined the thermal stability and morphology. Atomic force microscope (AFM) disclosed that Ver-HDA-GS consisted of one- or two-layer graphene regions. However, the Ver-HDA-GS layers showed average thickness of 1.76 nm. The thermal stabilities of the FGSs were better than those of the GO and RGO. The Ver- HDA-GS was well dispersed in common solvents such as dimethyl sulfoxide (DMSO), toluene, chloroform, and decalin.
Keywords
graphene; graphene oxide; functionalized graphene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, Nano Lett., 9, 1593 (2009).   DOI   ScienceOn
2 J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer, 52, 5 (2011).   DOI   ScienceOn
3 S. K. Pradhan, B. B. Nayak, S. S. Sahay, and B. K. Mishra, Carbon, 47, 2290 (2009).   DOI   ScienceOn
4 G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, and R. Ruoff, Carbon, 48, 630 (2010).   DOI   ScienceOn
5 S. Ansari and E. P. Giannelis, J. Polym. Sci. Part B: Polym. Phys., 47, 888 (2009).   DOI   ScienceOn
6 A. V. Raghu, Y. R. Lee, and H. M. Jeong, Macromol. Chem. Phys., 209, 2487 (2008).   DOI   ScienceOn
7 D. Cai and M. Song, J. Mater. Chem., 20, 7906 (2010).   DOI   ScienceOn
8 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
9 W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nature Chem., 1, 403 (2009).   DOI   ScienceOn
10 H.-J. Shin, K. K. Kim, A. Benayad, S. -M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeng, J. M. Kim, J.-Y. Choi, and Y. H. Lee, Adv. Funct. Mater., 19, 1987 (2009).   DOI   ScienceOn
11 S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Carbon, 44, 3342 (2006).   DOI   ScienceOn
12 W. Chen, L. Yan, and P. R. Bangal, J. Phys. Chem. C, 114, 19885 (2010).   DOI   ScienceOn
13 G. Wang, X. Shen, B. Wang, J. Yao, and J. Park, Carbon, 47, 1359 (2009).   DOI   ScienceOn
14 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).   DOI   ScienceOn
15 M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007).   DOI   ScienceOn
16 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI   ScienceOn
17 A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B, 102, 4477 (1998).   DOI   ScienceOn
18 K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, J. Mater. Chem., 20, 2277 (2010).   DOI   ScienceOn
19 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI   ScienceOn
20 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).   DOI   ScienceOn
21 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008).   DOI   ScienceOn
22 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008).   DOI   ScienceOn
23 X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotechnol., 3, 491 (2008).   DOI   ScienceOn
24 I. J, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett., 8, 4283 (2008).   DOI   ScienceOn
25 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005).   DOI   ScienceOn
26 A. K. Geim, Science, 324, 1530 (2009).   DOI   ScienceOn
27 A. Reina, X. jia, J. Ho, D. Nezich, H. S, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009).   DOI   ScienceOn
28 M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Phys. Chem. Chem. Phys., 13, 20836 (2011).   DOI   ScienceOn
29 A. Mattausch and O. Pankratov, Phys. Stat. Sol. (b), 245, 1425 (2008).   DOI   ScienceOn
30 H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).