• Title/Summary/Keyword: functional time series

Search Result 117, Processing Time 0.032 seconds

FPCA for volatility from high-frequency time series via R-function (FPCA를 통한 고빈도 시계열 변동성 분석: R함수 소개와 응용)

  • Yoon, Jae Eun;Kim, Jong-Min;Hwang, Sun Young
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.805-812
    • /
    • 2020
  • High-frequency data are now prevalent in financial time series. As a functional data arising from high-frequency financial time series, we are concerned with the intraday volatility to which functional principal component analysis (FPCA) is applied in order to achieve a dimension reduction. A review on FPCA and R function is made and high-frequency KOSPI volatility is analysed as an application.

The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series (함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.667-675
    • /
    • 2018
  • When a financial time series consists of daily (closing) returns, traditional volatility models such as autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) are useful to figure out daily volatilities. With high frequency returns in a day, one may adopt various multivariate GARCH techniques (MGARCH) (Tsay, Multivariate Time Series Analysis With R and Financial Application, John Wiley, 2014) to obtain intraday volatilities as long as the high frequency is moderate. When it comes to the ultra high frequency (UHF) case (e.g., one minute prices are available everyday), a new model needs to be developed to suit UHF time series in order to figure out continuous time intraday-volatilities. Aue et al. (Journal of Time Series Analysis, 38, 3-21; 2017) proposed functional GARCH (fGARCH) to analyze functional volatilities based on UHF data. This article introduces fGARCH to the readers and illustrates how to estimate fGARCH equations using UHF data of KOSPI and Hyundai motor company.

Nonparametric clustering of functional time series electricity consumption data (전기 사용량 시계열 함수 데이터에 대한 비모수적 군집화)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.149-160
    • /
    • 2019
  • The electricity consumption time series data of 'A' University from July 2016 to June 2017 is analyzed via nonparametric functional data clustering since the time series data can be regarded as realization of continuous functions with dependency structure. We use a Bouveyron and Jacques (Advances in Data Analysis and Classification, 5, 4, 281-300, 2011) method based on model-based functional clustering with an FEM algorithm that assumes a Gaussian distribution on functional principal components. Clusterwise analysis is provided with cluster mean functions, densities and cluster profiles.

Volatility for High Frequency Time Series Toward fGARCH(1,1) as a Functional Model

  • Hwang, Sun Young;Yoon, Jae Eun
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • As high frequency (HF, for short) time series is now prevalent in the presence of real time big data, volatility computations based on traditional ARCH/GARCH models need to be further developed to suit the high frequency characteristics. This article reviews realized volatilities (RV) and multivariate GARCH (MGARCH) to deal with high frequency volatility computations. As a (functional) infinite dimensional models, the fARCH and fGARCH are introduced to accommodate ultra high frequency (UHF) volatilities. The fARCH and fGARCH models are developed in the recent literature by Hormann et al. [1] and Aue et al. [2], respectively, and our discussions are mainly based on these two key articles. Real data applications to domestic UHF financial time series are illustrated.

Functional Separation of Myoelectric Signal of Human Arm Movements Using Time Series Analysis (시계열 해석을 이용한 팔운동 근전신호의 기능분리)

  • 홍성우;남문현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1051-1059
    • /
    • 1992
  • In this paper, two general methods using time-series analysis in the functional separation of the myoelectric signal of human arm movements are developed. Autocorrelation, covariance method and sequential least squares algorithm were used to determine the model parameters and the order of signal model to describe six arm movement patterns` the forearm flexion and extension, the wrist pronation and supination, rotation-in and rotation-out. The confidence interval to classify the functions of arm movement was defined by the mean and standard deviation of total squared error. With the error signals of autoregressive(AR) model, the result showed that the highest success rate was obtained in the case of 4th order, and success rate was decreased with increase of order. Autocorrelation was the method of choice for better success rate. This technique might be applied to biomedical and rehabilitation engineering.

  • PDF

Exploring COVID-19 in mainland China during the lockdown of Wuhan via functional data analysis

  • Li, Xing;Zhang, Panpan;Feng, Qunqiang
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.103-125
    • /
    • 2022
  • In this paper, we analyze the time series data of the case and death counts of COVID-19 that broke out in China in December, 2019. The study period is during the lockdown of Wuhan. We exploit functional data analysis methods to analyze the collected time series data. The analysis is divided into three parts. First, the functional principal component analysis is conducted to investigate the modes of variation. Second, we carry out the functional canonical correlation analysis to explore the relationship between confirmed and death cases. Finally, we utilize a clustering method based on the Expectation-Maximization (EM) algorithm to run the cluster analysis on the counts of confirmed cases, where the number of clusters is determined via a cross-validation approach. Besides, we compare the clustering results with some migration data available to the public.

Functional ARCH (fARCH) for high-frequency time series: illustration (고빈도 시계열 분석을 위한 함수 변동성 fARCH(1) 모형 소개와 예시)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.983-991
    • /
    • 2017
  • High frequency time series are now prevalent in financial data. However, models need to be further developed to suit high frequency time series that account for intraday volatilities since traditional volatility models such as ARCH and GARCH are concerned only with daily volatilities. Due to $H{\ddot{o}}rmann$ et al. (2013), functional ARCH abbreviated as fARCH is proposed to analyze intraday volatilities based on high frequency time series. This article introduces fARCH to readers that illustrate intraday volatility configuration on the KOSPI and the Hyundai motor company based on the data with one minute high frequency.

Functional Forecasting of Seasonality (계절변동의 함수적 예측)

  • Lee, Geung-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.885-893
    • /
    • 2015
  • It is important to improve the forecasting accuracy of one-year-ahead seasonal factors in order to produce seasonally adjusted series of the following year. In this paper, seasonal factors of 8 monthly Korean economic time series are examined and forecast based on the functional principal component regression. One-year-ahead forecasts of seasonal factors from the functional principal component regression are compared with other forecasting methods based on mean absolute error (MAE) and mean absolute percentage error (MAPE). Forecasting seasonal factors via the functional principal component regression performs better than other comparable methods.

Generating Complicated Models for Time Series Using Genetic Programming

  • Yoshihara, Ikuo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.4-146
    • /
    • 2001
  • Various methods have been proposed for the time series prediction. Most of the conventional methods only optimize parameters of mathematical models, but to construct an appropriate functional form of the model is more difficult in the first place. We employ the Genetic Programming (GP) to construct the functional form of prediction models. Our method is distinguished because the model parameters are optimized by using Back-Propagation (BP)-like method and the prediction model includes discontinuous functions, such as if and max, as node functions for describing complicated phenomena. The above-mentioned functions are non-differentiable, but the BP method requires derivative. To solve this problem, we develop ...

  • PDF

Financial Application of Time Series Prediction based on Genetic Programming

  • Yoshihara, Ikuo;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.524-524
    • /
    • 2000
  • We have been developing a method to build one-step-ahead prediction models for time series using genetic programming (GP). Our model building method consists of two stages. In the first stage, functional forms of the models are inherited from their parent models through crossover operation of GP. In the second stage, the parameters of the newborn model arc optimized based on an iterative method just like the back propagation. The proposed method has been applied to various kinds of time series problems. An application to the seismic ground motion was presented in the KACC'99, and since then the method has been improved in many aspects, for example, additions of new node functions, improvements of the node functions, and new exploitations of many kinds of mutation operators. The new ideas and trials enhance the ability to generate effective and complicated models and reduce CPU time. Today, we will present a couple of financial applications, espc:cially focusing on gold price prediction in Tokyo market.

  • PDF