• Title/Summary/Keyword: functional polymers

Search Result 283, Processing Time 0.021 seconds

An Application of Acrylic/Polyisocyanate Network Polymers to The High Solid Coatings (아크릴/폴리이소시아네이트 망상구조 폴리머의 하이솔리드 도료에의 적용)

  • Choi, Yong-Ho;Hwang, Kyu-Hyun;Kim, Dae-Won;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Quater polymer(MBHA) containing two types of acrylic functional group, acetoacetoxyethyl methacrylate(AAM) and 2-hydroxyethyl acrylate was prepared. Then, the MBHA was blended with polyisocyanate type Desmodur IL as a curing agent. Thereafter the mixture was cured at room temperature to get high solid acrylic/polyisocyanate. The MBHA was synthesized at $150^{\circ}C$ for 6 hours typically, and the final conversion reached 87-88%. Lowering Tg and increasing AAM amount in the MBHA resulted in high value of conversion. There was no difference in conversion with the variations of OH values. From the results of physical property tests, MIHS coating was proved to be a good automotive top-coating material.

Electrical Characteristics of Nano-Structural Monolayer (나노구조 단분자막의 전기적 특성)

  • Choi, Yong-Sung;Cho, Jang-Hoon;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.166-167
    • /
    • 2006
  • Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Multiple branching yields a large number of chain ends that distinguish dendrimers from conventional star-like polymers and microgels. The azobenzene dendrimer is one of the dendrimeric macromolecules that include the azo-group exhibiting a photochromic character. Due to the presence of the charge transfer element of the azo-group and its rod-shaped structure, these compounds are expected to have potential interest in electronics and photoelectronics, especially in nonlinear optics. In the present paper, we give pressure stimulation to organic thin films and detect the induced displacement current. Functional photoisometrization organic molecular the photo-stimulus to organic monomolecular L-films and LB films of dendrimer and 8A5H were performed. The 8A5H organic monolayer in case of pressure stimulus occurred that positive course but in case of the photo-stimulus compared positive and negative. It is assumed that generation forms of displacement current were measured when photo-stimulus for Impression.

  • PDF

Synthesis and Degradation Behaviors of PEO/PL/PEO tri-block Copolymers

  • Lee, Soo-Hong;Kim, Soo-Hyun;Kim, Young-Ha;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.85-90
    • /
    • 2002
  • Poly (ethylene oxide)/polylatide/poly(ethylene oxide) (PEO/PL/PEO) tri-block copolymers, which each block is connected by ester bond, were synthesized by coupling reaction of PL with PEO in the presence of pyridine. PL/PEO/PL tri-block copolymer was synthesized by ring opening polymerization of L-lactide initiated by PEO in the presence of stannous octoate. Degradation behavior of the copolymers was investigated in a pH 7.4 phosphate buffer saline (PBS) at 37$\pm$1 $^{\circ}C$. Gel permeation chromatography (GPC) and $^1$H-nuclear magnetic resonance (NMR) were used to monitor the change of mass loss, molecular weight and composition of copolymers. In hydrolytic degradation, the PEO/PL/PEO tri-block copolymer with high PEO contents affected the increase of its mass loss, and resulted in the decrease of its molecular weight as well as PEO composition. However, when PL/PEO/PL and PEO/PL/PEO tri-block copolymers had similar PEO contents, PEO/PL/PEO decreased faster in molecular weight and PEO composition than PL/PEO/PL.

Polyetherimide/Dicyanate Semi-interpenetrating Polymer Networks Having a Morphology Spectrum

  • Kim, Yu-Seung;Min, Hyun-Sung;Kim, Sung-Chun
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.60-66
    • /
    • 2002
  • The morphology, dynamic mechanical behavior and fracture behavior of polyetherimide (PEI)/dicyanate semi-interpenetrating polymer networks (semi-IPNs) with a morphology spectrum were analyzed. To obtain the morphology spectrum, we disported PEI particles in the procured dicyanate resin containing 300 ppm of zinc stearate catalyst. The semi-IPNs exhibited a morphology spectrum, which consisted of nodular spinodal structure, dual-phase morphology, and sea-island type morphology, in the radial direction of each dispersed PEI particle due to the concentration gradient developed by restricted dissolution and diffusion of the PEI particles during the curing process of the dicyanate resin. Analysis of the dynamic mechanical data obtained by the semi-IPNs demonstrated that the transition of the PEI-rich phase was shifted toward higher temperature as well as becoming broader because of the gradient structure. The semi-IPNs with the morphology spectrum showed improved fracture energy of 0.3 kJ/$m^2$, which was 1.4 times that of the IPNS having sea-island type morphology. It was found that the partially introduced nodular structure played a crucial role in the enhancement of the fracture resistance of the semi-IPNs.

Nonlinear large deformation dynamic analysis of electroactive polymer actuators

  • Moghadam, Amir Ali Amiri;Kouzani, Abbas;Zamani, Reza;Magniez, Kevin;Kaynak, Akif
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1601-1623
    • /
    • 2015
  • Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material (나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

Nanohybridization of Polyoxometalate and Nanomaterials for Electrochemical Application (전기 화학 응용을 위한 폴리옥소메탈레이트와 나노물질의 나노하이브리드화)

  • Yang, MinHo;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.363-368
    • /
    • 2018
  • Polyoxometalates (POMs) have outstanding properties and a great deal of potential for electrochemical applications. As POMs are highly soluble, the implementation of POMs in various functional materials is required to fully use their potential in electrochemical devices. Here, we will review the recently developed immobilization methods to incorporate POMs into conductive nanomaterials, such as nanocarbons and conducting polymers. Various immobilization strategies involve POMs entrapped in conducting polymer matrix and integration of POMs into nanocarbons using a Langmuir-Blodgett technique, a layer-by-layer self-assembly, and an electrochemical in-situ polymerization. In addition, we will review a variety of electrochemical applications including electrocatalysts for water oxidation, lithium-ion batteries, supercapacitors, and electrochemical biosensors.

Preparation of Composite Membranes of Dense PAA-Poly(BMA-co-MMA) IPN Supported on Porous and Crosslinked Poly(BMA-co-MMA) Sublayer and Their Pervaporation Characteristics

  • Kim, Sung-Chul;Lim, Byung-Yun
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2003
  • For the pervaporation of water-ethanol mixtures, new composite membranes having poly(acrylic acid)-poly (butyl methacrylate-co-methyl methacrylate) interpenetrati ng polymer network [PAA-P(BMA-co-MMA) IPN] skin layer supported on porous and crosslinked poly(BMA-co-MMA) were prepared. The morphology of the sub-layer of the composite membrane prepared in the presence of 60 wt% solvent showed cellular structure, on the other hand that of sublayer prepared in the presence of 70 wt% solvent presented very porous interconnected pore structure with macrovoids. Permeation rates of the composite membranes were largely influenced by the morphology of the sublayer. Separation factors increased with the increase of the degree of crosslinking of the PAA network. It was found that permeation rates could be increased by introducing anionic charges on carboxyl groups of the PAA. The permeation rate changes of the PAA-P(BMA-co-MMA) IPN composite membranes according to the feed compositions showed quite similar pattern with the swelling behavior in water-ethanol mixtures.

A solar Cell Fiber using Semi-conductive Polymers (반도체형 고분자를 이용한 태양전지섬유)

  • Song, Jun-Hyung;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.