• Title/Summary/Keyword: functional linear models

Search Result 55, Processing Time 0.026 seconds

Using Harmonic Analysis and Optimization to Study Macromolecular Dynamics

  • Kim Moon-K.;Jang Yun-Ho;Jeong Jay-I.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.382-393
    • /
    • 2006
  • Mechanical system dynamics plays an important role in the area of computational structural biology. Elastic network models (ENMs) for macromolecules (e.g., polymers, proteins, and nucleic acids such as DNA and RNA) have been developed to understand the relationship between their structure and biological function. For example. a protein, which is basically a folded polypeptide chain, can be simply modeled as a mass-spring system from the mechanical viewpoint. Since the conformational flexibility of a protein is dominantly subject to its chemical bond interactions (e.g., covalent bonds, salt bridges, and hydrogen bonds), these constraints can be modeled as linear spring connections between spatially proximal representatives in a variety of coarse-grained ENMs. Coarse-graining approaches enable one to simulate harmonic and anharmonic motions of large macromolecules in a PC, while all-atom based molecular dynamics (MD) simulation has been conventionally performed with an aid of supercomputer. A harmonic analysis of a macroscopic mechanical system, called normal mode analysis, has been adopted to analyze thermal fluctuations of a microscopic biological system around its equilibrium state. Furthermore, a structure-based system optimization, called elastic network interpolation, has been developed to predict nonlinear transition (or folding) pathways between two different functional states of a same macromolecule. The good agreement of simulation and experiment allows the employment of coarse-grained ENMs as a versatile tool for the study of macromolecular dynamics.

A FRAM-based Systemic Investigation of a Rail Accident Involving Human Errors (인적오류가 관여된 철도 사고의 체계적 분석을 위한 FRAM의 활용)

  • Choi, Eun-Bi;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • There has been a significant decline in the number of rail accidents in Korea since system safety management activities were introduced. Nonetheless, analyzing and preventing human error-related accidents is still an important issue in railway industry. As a railway system is increasingly automated and intelligent, the mechanism and process of an accident occurrence are more and more complicated. It is now essential to consider a variety of factors and their intricate interactions in the analysis of rail accidents. However, it has proved that traditional accident models and methods based on a linear cause-effect relationship are inadequate to analyze and to assess accidents in complex systems such as railway systems. In order to supplement the limitations of traditional safety methods, recently some systemic safety models and methods have been developed. Of those, FRAM(Functional Resonance Analysis Method) has been recognized as one of the most useful methods for analyzing accidents in complex systems. It reflects the concepts of performance adjustment and performance variability in a system, which are fundamental to understanding the processes of an accident in complex systems. This study aims to apply FRAM to the analysis of a rail accident involving human errors, which occurred recently in South Korea. Through the application of FRAM, we found that it can be a useful alternative to traditional methods in the analysis and assessment of accidents in complex systems. In addition, it was also found that FRAM can help analysts understand the interactions between functional elements of a system in a systematic manner.

Comparison of Structural Change Tests in Linear Regression Models

  • Kim, Jae-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1197-1211
    • /
    • 2011
  • The actual power performance of historical structural change tests are compared under various alternatives. The tests of interest are F, CUSUM, MOSUM, Moving Estimates and empirical distribution function tests with both recursive and ordinary least-squares residuals. Our comparison of the structural tests involves limiting distributions under the hypothesis, the ability to detect the alternative hypotheses under one or double structural change, and smooth change in parameters. Even though no version is uniformly superior to the other, the knowledge about the properties of those tests and connections between these tests can be used in practical structural change tests and in further research on other change tests.

Measuring the Impact of Change Orders on Project Performances by Building Type

  • Juarez, Marcus;Kim, Joseph J.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.179-187
    • /
    • 2022
  • The project performances can be measured in terms of meeting the project schedule, budget, and conformance to functional and technical specifications. Numerous studies have been conducted to examine the causes and effects of change orders for both vertical and horizontal construction, respectively. However, these studies mainly focus on a single project type, so this paper examines the impact of change order for cost growth and schedule overruns using four different building types to close the gap in the change order research area. A total of 211 building projects are collected from four building types: healthcare, residential, office, and education. Statistical analyses using ANOVA tests and linear regression models are used to examine the created metric $CO/day on the cost and schedule impacts. The results found that mean $CO/day values were not statistically different among building types, and that the sum of change orders is a statistically significant predictor of $CO/day. The results will help project stakeholders mitigate the negative change orders effects can be a challenge for project managers and researchers alike.

  • PDF

A Computational Model for the Word-Syntax (단어통사론을 위한 계산 모형)

  • Kim, Dong-Joo;Kim, Han-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.6
    • /
    • pp.11-23
    • /
    • 2002
  • Computational models up to now for Korean morphology have been linear in that it deal with only segmentation of morphemes rather than formation of the internal structure of a word. When integrating a linear computational model with syntax analysis, it requires an additional interface component between this model and the syntax to bind morphemes into sentence constituents. Furthermore the linear model is not semantically intuitive. In this paper, based on word-syntactical viewpoint, we propose an integrated computational model that deals with morpheme segmentation, formation of syntactic element (sentence constituent), and even internal structure of word. Formalism of two-level morphology is employed to cope with morpheme segmentation and alternation problems, and functional diacritics are proposed to incorporate categorial context into the two-level formalism. A modified GLR-based algorithm is also proposed to check syntactical constraint of morphemes.

Growth Model of Sowthistle (Ixeris dentata Nakai) Using Expolinear Function in a Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 선형 지수 함수를 이용한 씀바귀의 생육 모델)

  • Cha, Mi-Kyung;Son, Jung-Eek;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • The objective of this study was to make growth and yield models of sowthistle (Ixeris dentata Nakai) by using an expolinear functional equation in a closed-type plant production system. The growth and yield of hydroponically-grown sowthistle were investigated under four different planting distances ($15{\times}10$, $15{\times}15$, $15{\times}20$, and $15{\times}25$ cm). Shoot dry weights per plant was the highest at $15{\times}25$ cm, but was the lowest at $15{\times}10$ cm. Shoot dry weights per area was the highest at $15{\times}15$ cm, but was the lowest at $15{\times}25$ cm. The optimum planting density and planting distance for yield of sowthistle were 44 plants/$m^2$ and $15{\times}15$ cm, respectively. Shoot dry weights per plant and per area were showed as an expolinear type functional equation. A linear relationship between shoot dry and fresh weights was observed to be linear regardless of the planting distance. Crop growth rate, relative growth rate and lost time in an expolinear functional equation showed quadratic function form. Radiation use efficiency of sowthistle was $4.3-6.1g{\cdot}MJ^{-1}$. The measured and estimated shoot dry weights showed a good agreement using days after transplanting as input data. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of sowthistle in a closed-type plant production system.

Reducing the Scan Time in Gastric Emptying Scintigraphy by Using Mathematical Models (위배출 신티그래피에서 수학적 모델을 이용한 지연영상 시간의 단축)

  • Yoon, Min-Ki;Hwang, Kyung-Hoon;Choe, Won-Sick;Lee, Byeong-Il;Lee, Jae-Sung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.4
    • /
    • pp.257-262
    • /
    • 2005
  • Purpose: Gastric emptying scan (GES) is usually acquired up to 2 hours. Our study investigated whether a fraction of meal-retention in the stomach at 120 minutes (FR120) was predicted from the data measured for 90 minutes by using non-linear curve fitting. We aimed at saving the delayed imaging by utilizing mathematical models. Materials and Methods: Ninety-six patients underwent GES immediately after taking a boiled egg with 74 MBq (2 mCi) Tc-99m DTPA. The patients were divided into Group I ($T_{1/2}\;{\leq}90\;min$) and Group II ($90\;min). Group I (n=51) had 21 men and 30 women, and Group II (n=45) 15 men and 30 women. There was no significant difference in age and sex between the two groups. Simple exponential, power exponential, and modified power exponential curves were acquired from the measured fraction of meal-retention at each time (0, 15, 30, 45, 60, 75, and 90 min) by non-linear curve fitting ($MATLAB^{\circledR}$ 5.3) and another simple exponential fitting was performed on the fractions at late times (60, 75, and 90 min). A predicted FR120 was calculated from the acquired functional formulas. A correlation coefficient between the measured FR120 and the predicted FR120 was computed ($MedCalc^{\circledR}$ 6.0). Results: Correlation coefficients(r) between the measured FR120 and the predicted FR120 of each mathematical functions were as follows: simple exponential function (Group I: 0.8558, Group II: 0.5982, p<0.0001), power exponential function (Group I: 0.8755, Group II: 0.6008, p<0.0001), modified power exponential function (Group I: 0.8892, Group II: 0.5882, p<0.0001), and simple exponential function at the late times(Group I: 0.9085, Group II: 0.6832, p<0.0001). In all the fitting models, the predicted FR120 were significantly correlated with the measured FR120 in Group I but not in Group II. There was no statistically significant difference in correlation among the 4 mathematical models. Conclusion: In the cases with $T_{1/2}\;{\leq}90\;min$, the predicted FR120 is significantly correlated with the measured FR120. Therefore, FR120 can be predicted from the data measured for 90 minutes by using non-linear curve fitting, saving the delayed imaging after 90 minutes when $T_{1/2}\;{\leq}90\;min$ is ascertained.

Estimation of Daily Milk Yields from AM/PM Milking Records

  • Lee, Deukhwan;Min, Hongrip
    • Journal of Animal Science and Technology
    • /
    • v.55 no.6
    • /
    • pp.489-500
    • /
    • 2013
  • Daily milk yields on test days were estimated using morning or afternoon partial milk yields collected by official agencies and the accuracy of the estimates was determined. Test-day data for milk yields consisted of 3,156,734 records of AM/PM partial milking measurements of 255,437 milking Holstein cows from 3,708 farms collected from December 2008 to April 2013. A linear regression model (LRM) was applied to estimate daily milk yields using alternate AM/PM milk yield records within lactation stages, milking intervals, and parities on every daily milk yield. The alternate statistical approach was a non-linear hierarchical model (NHM) in which Brody's growth function was implemented by reflecting an animal's physiological milk production cycle. When compared with LRM, daily milk yields predicted by the NHM were assumed to be functionally related to day in milk (or lactation) stage, milking intervals, and partial milk yields. Since the results were in terms of accuracies based on comparisons of different statistical models, accuracies of estimates of daily milk yields by NHM were close to those determined by the LRM. The average of these accuracies was 0.94 for AM partial milk yields and 0.93 for PM partial milk yields for first calving cows. However, the accuracies of AM/PM milk yield estimations from cows under a calving stage higher than the first parity were 0.96 and 0.95, respectively. Correlations between the estimated daily milk yields and the actual daily milk yields ranged from 0.96~0.98. These accuracies were lower for unbalanced AM/PM milking intervals and the first calving cows. Overall, prediction of daily milk yields by NHM would be more appropriate than by LRM due to its flexibility under different milk yield-related circumstances, which provides an idea of the functional relationship between milking intervals and days in milk with daily milk yields from statistical viewpoints.

Art therapy using famous painting appreciation maintains fatigue levels during radiotherapy in cancer patients

  • Koom, Woong Sub;Choi, Mi Yeon;Lee, Jeongshim;Park, Eun Jung;Kim, Ju Hye;Kim, Sun-Hyun;Kim, Yong Bae
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the efficacy of art therapy to control fatigue in cancer patients during course of radiotherapy and its impact on quality of life (QoL). Materials and Methods: Fifty cancer patients receiving radiotherapy received weekly art therapy sessions using famous painting appreciation. Fatigue and QoL were assessed using the Brief Fatigue Inventory (BFI) Scale and the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) at baseline before starting radiotherapy, every week for 4 weeks during radiotherapy, and at the end of radiotherapy. Mean changes of scores over time were analyzed using a generalized linear mixed model. Results: Of the 50 patients, 34 (68%) participated in 4 sessions of art therapy. Generalized linear mixed models testing for the effect of time on mean score changes showed no significant changes in scores from baseline for the BFI and FACIT-F. The mean BFI score and FACIT-F total score changed from 3.1 to 2.7 and from 110.7 to 109.2, respectively. Art therapy based on the appreciation of famous paintings led to increases in self-esteem by increasing self-realization and forming social relationships. Conclusion: Fatigue and QoL in cancer patients with art therapy do not deteriorate during a period of radiotherapy. Despite the single-arm small number of participants and pilot design, this study provides a strong initial demonstration that art therapy of appreciation for famous painting is worthy of further study for fatigue and QoL improvement. Further, it can play an important role in routine practice in cancer patients during radiotherapy.

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

  • KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.4
    • /
    • pp.213-228
    • /
    • 2015
  • The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.