• Title/Summary/Keyword: functional concrete

Search Result 256, Processing Time 0.027 seconds

Structural Design of an Ultra High-rise Building Using Concrete Filled Tubular Column with 780 N/㎟ Class High-strength Steel and Fc150 N/㎟ High-strength Concrete

  • Matsumoto, Shuichi;Hosozawa, Osamu;Narihara, Hiroyuki;Komuro, Tsutomu;Kawamoto, Shin-ichiro
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.73-79
    • /
    • 2014
  • In recent years, the performance requested for which an ultra-high rise buildings is diversified. Large spans are designed in order to gain wide workspace. Column positions are shifted in middle stories to provide space different from neighboring floors. Moreover, in the bottom layers of the building, it is becoming more important to expand freedom to plan flexibility such as creating publically opened wide atria that gives attractive free space. Earthquake-proof criteria is also changing not only human life protection deign but also a design that allows functional continuity. In order to achieve thee needs, as one of technology, we have developed ultra-high strength concrete filled tubular (CFT) columns of the box section that combine ultra-high strength concrete with specified strength of $150N/mm^2$ and ultra-high strength steel material with tensile strength of $780N/mm^2$. In this paper, the outline of development of an ultra-high strength CFT column is reported. Also, the structural design of the ultra-high-rise building using the CFT columns is reported.

A Study on the Filed Application of Environmental Friendly Porous Concrete For Planting (환경친화 식생용 포러스콘크리트의 현장적용성에 관한 연구)

  • Kim Jeong Hwan;Lee Nam Ik;Lee Young Hee;Kwon Hyuk Jun;Lee Jun;Park Seung Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.769-772
    • /
    • 2005
  • The river environments of many streams in korea have been deteriorate through the rapid industrialization and urbanization since the 1960s. In Germany and Japan, on the other hand, much efforts on the research and project have been made for the restoration of the deteriorated streams to close-to-nature. in order to restore the deteriorated streams, therefore, it is necessary to investigate such advanced technologies and materials. In view of this requirement, various research paths are being taken focusing on coarse aggregates to make multi-functional porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification, and applicability to vegetation. The Purpose of this study is to investigate the method for recovery of the environment in the streams area using porous concrete block. the porous concrete block applies for test in the cheonggae-cheon have been monitored planting during six month. after 6 months, plant grows flourishing and reconstructed in state such as nature rivers.

  • PDF

Durability of High Early Strength Concrete Using Fine Particles Cement (미립자 시멘트를 이용한 조강 콘크리트의 내구성 검토)

  • Kim, Yong-Jic;Park, Sang-Joon;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.757-763
    • /
    • 2011
  • In order to secure the effective high early age strength of the concrete, the study was carried out with a goal of functional improvement of cement. This study was carried out as a follow up for the previous study, which analyzed the high early age strength and durability of concrete mixed with fine particle cement (FC) during cement production. The experimental results showed that the target range for each mix was satisfied at fresh state of concrete. Also, when mixed with fine particles cement, the setting time improved. Additionally, compressive strength and heat of hydration increased and remained same, respectively. Especially, the durability remained same even when mixed with fine particle cement.

Engineering Properties of Permeable Polymer Concrete for Pavement Using Polypropylene Fiber (폴리프로필렌섬유를 혼입한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Lee, Seung-Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.277-283
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood. This study was performed to evaluate void ratio, permeability coefficient, and compressive strength of permeable polymer concrete (PPC) using crushed and recycled coarse aggregate that is obtained from waste concrete. Also, 6 mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. Binder and filler used were unsaturated polyester resin and CaCO3, respectively. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes 5~10 mm. In the test results, regardless of kinds of aggregates and fiber contents, the void ratio, permeability coefficient and compressive strength of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. Accordingly, polypropylene fiber and recycled coarse aggregate can be used for permeable pavement.

Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction (재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

Performance Based Design for High Curability Concrete (성능중심형 고내구성 콘크리트의 배합설계)

  • Kim, S.S.;Park, K.P.;Lee, J.B.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.969-974
    • /
    • 2008
  • This study was carried out to investigate the service life of reinforced concrete structures for durability design. The service life has three aspects physical service life, functional service life, and social service life, and that a structures are normally demolished to end its service life when either the functional or social service life is over before the physical service life comes to end an end. In the future, it is very important that durability design shall be performed establishing design service life and the unallowable state of deterioration in the course of design service life.

  • PDF

Execution Case Study on the Explosive Demolition of a Large-Section RC Special Structure (대단면 철근콘크리트 특수구조물 발파해체 시공 사례)

  • Park, Hoon;Suk, Chul-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • Recently, the number of industrial structures that must be demolished due to structural deterioration and unsatisfactory functional conditions has been increased. To minimize environmental hazardous factors created during the process of demolition, the explosive demolition method has been applied increasingly. This execution case was intended to describe an application of the explosive demolition method to the demolition of a Crusher & Screen structure, which was a large-section reinforced concrete special structure. It was deemed necessary due to its structural deterioration and unsatisfactory functional condition. Various pre-weakening processes and blasting patterns were applied to the large-section reinforced concrete members, and to reduce blasting vibration and impact vibration, time intervals were established for blasting in the same column and for blasting between blasting blocks. By applying the explosive demolition method to the demolition of a large-section reinforced concrete special structure, the explosive demolition was completed safely and efficiently, without causing any damage to surrounding facilities.

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

Design and manufacture of hybrid polyrnerconcrete bed for high speed machine tool (초고속 공작기계용 Hybrid Poymer Concrete bed 의 설계와 제작)

  • 서정도;임태성;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.404-409
    • /
    • 2004
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool life. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. Also, co-cure bonding method for functional part mounting was exhibited experimentally, by which manufacturing time and cost for polymer concrete bed will be remarkably reduced.

  • PDF

Life cycle analysis of concrete and asphalt used in road pavements

  • lvel, Jocelyn;Watson, Rachel;Abbassi, Bassim;Abu-Hamatteh, Ziad Salem
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • The article examines the impact differences between producing concrete and asphalt. Both materials are widely used in the construction industry. Construction activities account for a large portion of greenhouse gases. Therefore, it is important to consider the Life Cycle Analysis (LCA) to reduce environmental impacts. In this study, the material processes were inputted into an LCA program called SimaPro. The database used for the study was Ecoinvent as it is one of the major databases within SimaPro. The materials were compared against impacts per kg of material produced as the functional unit. Each process was created using the materials, energy and transportation required to produce the materials. Waste streams were also included in the process to determine the impacts after the product was done with its useful life. Using the ReCiPe method, an LCA was conducted. Midpoint and endpoint categories were examined for both the productions. The processes had similar results for the human health and ecosystems categories; however asphalt was marginally higher for both. Asphalt had exceeded concrete in the resource impact category by 100 mPt. The results indicate that concrete is the more sustainable building material. Determination of various impacts of the materials is important for material selection.