• Title/Summary/Keyword: functional compounds

Search Result 1,192, Processing Time 0.032 seconds

Effects of Compounds from Physalis angulata on Fatty Acid Synthesis and Glucose Metabolism in HepG2 Cells via the AMP-activated Protein Kinase Pathway

  • Hoa, Hoang Thai;Thu, Nguyen Thi;Dong, Nguyen Thuong;Oanh, Tran Thi;Hien, Tran Thi;Ha, Do Thi
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 - 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 ㎍/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 - 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 - 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.

Synthetic Lead Compounds Modulate Activity of Large-conductance $Ca^{2+}$-activated Potassium Channels Expressed in Xenopus Oocytes

  • Ha, Tal-Soo;Kim, Yong-Chul;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.42-42
    • /
    • 2003
  • Large-conductance $Ca^{2+}$-activated potassium channels ($BK_{Ca}$ are a widely distributed and play key roles in various cell functions. In nerve cells, $BK_{Ca}$ channels shorten the duration of action potentials and block $Ca^{2+}$ entry thereby repolarizing excitable cells after excitation. $BK_{Ca}$ channel opening has been postulated to confer neuroprotection during stroke, and has attracted attention as a means for therapeutic intervention in asthma, hypertension, convulsions, and traumatic brain injury. Several natural and synthetic compounds including a steroid hormone, $\beta$-estradiol, have been identified as the activators of $BK_{Ca}$ channels. Based on the structural features of the previously reported activators of $BK_{Ca}$ channels, we designed several lead compounds, synthesized chemically, and tested their functional activity on cloned $BK_{Ca}$ channels. The $\alpha$ subunit of rat $BK_{Ca}$ channel was expressed alone or with different $\beta$ subunits in Xenopus oocytes and the effects of the compounds were tested electrophysiological means. One of the lead compounds affected the activity of the $\alpha$ subunit of $BK_{Ca}$ channel in a $\beta$ subunit-specific manner. While the activity of B $K_{ca}$ channel $\alpha$ subunit was Potentiated, the channel composed of $\alpha$ and $\beta$1 subunits were inhibited by this compound. We are currently investigating the mechanism of the $\beta$ subunit-dependent effects and planning to localize the receptor site of the lead compound.f the lead compound.

  • PDF

Volatile Flavor Components in Various Varieties of Grape(Vitis vinifera L.) (포도의 품종별 휘발성 향기성분 분석)

  • 박은령;김경수
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.366-372
    • /
    • 2000
  • Volatile flavor components in three grape(Vitis vinifera L.) varieties were extracted by SDE(Simultaneous steam distillation and extraction) method using the mixture of n-pentane and diethylether(1:1, v/v) as an extract solvent. Grapes of the following varieties were studies : Blackolympia, Campbell and Delaware. The volatile extracts were analyzed by GC-FID and GC/MS. The totals of 77, 72 and 74 volatile flavor components were identified in Blackolympia, Campbell and Delaware, respectively. (E)-2-Hexenal(20.36%), diethylacetal(18.03%), hexanal and ethyl acetate were contained as the main compounds of Blackolympia. In Campbell, ethyl acetate(30.81%) was relatively more abundant than other compounds and among functional groups, C$\_$6/ aldehydes and alcohols were major constituents of the extract. On the other hand, in Delaware, alcohols was the major constituent group and (E)-2-hexenal(21.07%) and (E)-2-hexena1-ol(19.43%) were the main compounds. All of three grape varieties contained a large amount of hexanal, (E)-2-hexenal, hexanol, (E)-2-hexen-1-ol, thus C$\_$6/-compounds proved to be major volatile components of grape and small amount of terpenols were only detected from Delaware.

  • PDF

Molecular Docking and Kinetic Studies of the A226N Mutant of Deinococcus geothermalis Amylosucrase with Enhanced Transglucosylation Activity

  • Hong, Seungpyo;Siziya, Inonge Noni;Seo, Myung-Ji;Park, Cheon-Seok;Seo, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1436-1442
    • /
    • 2020
  • Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substrate-binding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.

Adsorption Isotherms of Catechin Compounds on (+)Catechin-MIP

  • Jin, Yinzhe;Wan, Xiaolong;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1549-1553
    • /
    • 2008
  • A molecular imprinted polymer (MIP) using (+)catechin ((+)C) as a template and acrylamide (AM) as a functional monomer was prepared. Acetonitrile was used as the porogen with ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The adsorption isotherms in the MIP were measured and the parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyses. The linear equation for original concentration and adsorpted concentrations was then expressed, and the adsorption equilibrium data were correlated into Langmuir, Freundlich, quadratic, and Langmuir Extension isotherm models. The mixture compounds of (+)C and epicatechin (EC) show competitive adsorption on specific binding sites of the (+)catechin-MIP. The adsorption concentrations of (+)C, epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG), on the (+)catechin-molecular imprinted polymer were compared. Through the analysis, the (+)catechin-molecular imprinted polymer showed higher adsorption ability than blank polymer which was synthesized molecular imprinted polymer without (+)catechin. Furthermore, the competitive Langmuir isotherms were applied to the mixture compounds of (+)C and EC.

Review of Functional Volatile Component in Essential Oil of Medicinal and Aromatic Plants (자원식물의 기능성 정유성분 이용 고찰)

  • 정해곤;방진기;성낙술;김성민
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.41-48
    • /
    • 2003
  • The number of natural products obtained from plants has now reached over 100,000 and new chemical compounds are being discovered ever year. Medicinal and Aromatic plants and their extracts have been used for centuries to relieve pain, aid healing, kill bacteria and insects are important as the antifungal and anti-herbivore agents with further compounds being involved in the symbiotic associations. Although their functions in plants have not been fully established, it is Known that some substances have growth regulatory properties while others are involved in pollination and seed dispersal. The complex nature of these chemicals are usually produced in various types of secretory structures which is an important character of a plant family and also influenced and controlled by genetic and ecological factors. Detailed anatomical description of these structures ave relevant to the market value of the plants, the verification of authenticity of a given species and for the detection of substitution or adulteration. Volatile oils are used for their therapeutic action for flavoring of lemon, in perfumery of rose or as starting materials for the synthesis of other compounds of turpentine. For therapeutic purposes they are administered as inhalations of eucalyptus oil, peppermint oil, as gargles and mouthwashes of thymol and transdermally many essential oils including those of lavender, etc. With these current trend for using volatile components in essential oil will be increasing in the future in Korea and in the world as well.

Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum

  • Lee, Jung-Kwan;Son, Ho-Kyoung;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.349-353
    • /
    • 2011
  • The ascomycete fungus Fusarium graminearum is an important plant pathogen responsible for Fusarium head blight in small grains and ear rot on maize. This fungus also produces the estrogenic metabolite, zearalenone (ZEA) that causes estrogenic disorders in humans and animals. Previously, we developed a conditional gene expression system for this fungus using a ZEA-inducible promoter (Pzear). In the present study, four other estrogenic compounds, including ${\beta}$-estradiol, estriol, estrone, and secoisolariciresinol, were screened as possible substitutes for ZEA in this system. Among them, ${\beta}$-estradiol was able to successfully induce the expression of a gene controlled by Pzear, while estrone was only able to partially induce its expression but the other two compounds were not effective. In combination, these results demonstrate that ${\beta}$-estradiol can replace ZEA in this conditional gene expression system, thereby eliminating the need to use the more expensive reagent, ZEA, and facilitating high-throughput functional analyses of F. graminearum in future studies.

Inhibitory Activity against Helicobacter pylori of Isolated Compounds from Pinus koraiensis Siebold et Zucc Leaves

  • Jo, Bun-Sung;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.19-23
    • /
    • 2016
  • A phenol substance was extracted from Pinus koraiensis Siebold et Zucc leaf extracts and its biological efficacy was measured. The highest content of the phenol substance contained in Pinus koraiensis Siebold et Zucc leaves was 13.5 mg/g, which was obtained when it was extracted with 80% ethanol. At a concentration of 200 mg/mL, the phenolic substances extracted with 80% ethanol and water showed antimicrobial activities against Helicobacter pylori, producing clear zones of 10 and 12 mm diameter, respectively. Pinus koraiensis Siebold et Zucc. leaf extracts were separated using a Sephadex LH-20 column and 4 fractions were obtained (fractions A-D). Fractions C and D showed the greatest inhibitory activity against Helicobacter pylori producing 10.1 and 12.3 mm clear zones, respectively. These two fractions were purified using a Sephadex LH-20 and MCI-gel column ($H_2O{\rightarrow}100%$ ethanol). Purified compounds A and B were identified as syringic acid and compound C was identified as p-coumaric acid based on $^1H$-nuclear magnetic resonance (NMR), $^{13}C$-NMR, and fast atom bombardment mass spectrometry spectra. When two or more purified compounds were mixed, a synergistic effect of anti-Helicobacter pylori activity was evident. This result indicates that extracts of Pinus koraiensis Siebold et Zucc leaves could be considered a functional food because of their high antimicrobial properties.

A Study on the Coagulation Efficiencies of Some Organics by Aluminum Based Coagulants (알루미늄 응집제들에 의한 몇가지 유기화합물의 응집효과에 관한 연구)

  • Kim, Mi-Hyang;Kim, Young-Man;Choi, Beom-Suk
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.478-483
    • /
    • 1999
  • Coagulation efficiencies of some organic compounds by aluminum based coagulants including alum, PAC, PACS were studied. The coagulation efficiency was highest at the neutral pH. It was decreased with an order of PACS, PAC, and alum at the neutral pH. The organic compounds of high molecular weights showed good coagulation efficiencies with all coagulants, while the small molecules were not coagulated. Organic compounds having more than two adjacent functional groups of OH and COOH showed coagulation efficiencies of 10~80%.

  • PDF

Identification of Character-impact Aroma Compounds and Comparisons of Sensory Attributes of Traditional Korean Medicinal Rice Wines Brewed with Functional Herbal Powders or Extracts

  • Lee, Gyu-Hee;Shin, Young;Chang, Yeong-Il;Jeong, Jae-Hong;Chang, Kyu-Seob;O, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.405-410
    • /
    • 2002
  • Rice wine was prepared with medicinal plants or plant extracts to obtain a value added nutritious alcoholic tonics. Powders of ten medicinal plants (PTM) or aqueous extracts prepared from them (ATM) were added during the initial stage of fermentation. Aroma compounds of rice wine (control) and wines containing PTM or ATM were isolated by liquid-liquid continuous solvent extraction (LLCSE) and analyzed by gas chromatography-olfactometry and aroma extract dilution analysis (AEDA). Desirable aroma compounds: acetaldehyde (sweet, ethereal), benzaldehyde (sweet, fragrant), ethyl acetate (sweet) and ethyl octanoate (sweet, ethanolic) had the highest log$_3$-flavor dilution (FD) factors in ATM. Results of sensory evaluation demonstrated that intensities of undesirable aroma attributes, such as koji and yeasty notes in control, and raw medicinal herb notes in PTM, were lowest in wine with ATM. Wines made with ATM had the most attractive aroma attributes among the three different traditional Korean medicinal wines.