• Title/Summary/Keyword: functional composites

Search Result 295, Processing Time 0.023 seconds

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF

Properties of Coating Film Containing Silicone acrylate (실리콘 아크릴레이트를 함유하고 있는 코팅필름의 물성)

  • Lee, Bong-Woo;Bang, Moon-Soo;Hong, Jin-Who;Kim, Dae-Jun;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • Modern plastics are of great importance in many practical applications and their performance can be enhanced by surface modification to improve their hardness, wear and chemical resistance. The object of this study is invention of functional hardening coating materials which are applied to plastic, such as polycarbonate, polymethylmethacylate and acrylonitrilebutadienestyrene. In order to invention of hardening coating materials, we synthesized new silicone acrylate oligomer and prepared coating films containing silicone acrylate oligomer (SAOE) on PC substrate. The curing of coatings is performed by UV-radiation. As results of experiments, The properties of coating films which are contained SAOE is greatly improved in comparison with coating films non-contained SAOE. Especially, when 1 wt% SAOE was introduced into the coating formulation, the UV hardening coatings obtained showed the best surface hardness and gloss.

  • PDF

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

Characteristics of Magnetoelectric Composite with Rosen Type Piezoelectric Transducer Structure (Rosen형 압전 변압기 구조를 적용한 자기-전기 복합체의 특성)

  • Park, Sung Hoon;Yoon, Woon-Ha;Patil, Deepak Rajaram;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.480-486
    • /
    • 2021
  • Magnetoelectric (ME) composite is composed of a piezoelectric material and a magnetostrictive material. Among various ME structures, 2-2 type layered ME composites are anticipated to be used as high-sensitivity magnetic field sensors and energy harvesting devices especially operating at its resonance modes. Rosen type piezoelectric transducer using piezoelectric material is known to amplify a small electrical input voltage to a large electrical output voltage. The output voltage of these Rosen type piezoelectric transducers can be further enhanced by modifying them into ME composite structures. Herein, we fabricated Rosen type ME composites by sandwiching Rosen type PMN-PZT single crystal between two Ni layers and studied their ME coupling. However, the voltage step-up ratio at the resonance frequency was found to be smaller than the value calculated with αME value. The ATILA FEA (Finite Elements Analysis) simulation results showed that the position of the nodal point was changed with the presence of a magnetostrictive layer. Thus, while designing a Rosen type ME composite with high performance in a resonant driving situation, it is necessary to optimize the position of the nodal point by optimizing the thickness or length of the magnetostrictive layer.

Preparation and Characterization of Hydrophobic Coatings from Carnauba Wax/Lignin Blends

  • BANG, Junsik;KIM, Jungkyu;KIM, YunJin;OH, Jung-Kwon;YEO, wanmyeong;KWAK, Hyo Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • To realize the infinite possibilities of materials derived from wood, it is necessary to overcome the weak moisture stability of wood. Thus, the development of an eco-friendly hydrophobic coating agent is essential, and of these, woody biomass-based materials are strongly attractive as coatings. In this study, eco-friendly hydrophobic wood coatings were prepared using carnauba wax purified from palm leaves and sprouts, and kraft lignin. The physicochemical properties of the carnauba wax/lignin blends according to the ratio of carnauba wax and lignin were observed by morphology and functional group change. In addition, the coating performance of carnauba wax/lignin blend coatings was confirmed by measuring the contact angle change. It was found that the addition of lignin could accelerate the atomization of wax particles, and that micro-roughness can be realized when applied to the actual wood surface, to ensure that the coating effect over time lasts longer. In addition, it was confirmed that the addition of lignin increases the hydrogen-bond-based interaction with the wood of the coating, thereby providing better coating stability and increasing the durability of the coating solvent under friction. The carnauba wax/lignin paint developed in this way is eco-friendly because all components are made of wood-based raw materials and have an excellent affinity with wood surfaces. Therefore, it is expected to be applicable to the coating process of wood-plastic composites and timber composites.

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Preparation of Flower-Like Al2O3 Nanostructures by Hydrothermal Synthesis and Study of Thermal Properties of BN/Al2O3 Composites (수열합성법을 이용한 Flower-Like 형상의 Al2O3 Nanostructure 제조 및 BN/Al2O3 복합체의 방열 특성 연구)

  • Noh Geon Song;Yong Jin Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.633-637
    • /
    • 2023
  • Recently, with the development of the smart device market, the integration of high-functional devices has increased the heat density, causing overload of the device, and resulting in various problems such as shortened lifespan, performance degradation, and failure. Therefore, research on heat dissipation materials is being actively conducted to realize next-generation electronic products. The heat dissipation material is characterized in that it is easy to dissipate heat due to its high thermal conductivity and minimizes leakage current flowing through the heat dissipation material due to its low electrical conductivity. In this study, flower-shaped Al2O3 and BN composites were engineered with a simple hydrothermal synthesis approach, and their thermal conductivity characteristics were compared and evaluated for each synthesis condition for the application to a heat dissipation material. Spherical BN and flower-shaped Al2O3 were easily obtained, and SEM/EDS analyses confirmed the uniform presence of BN between the Al2O3, and it can be expected that these shapes can affect the thermal conductivity.

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Development of High Performance Nanocomposites using Functionalized Plant Oil Resins (식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발)

  • Han, Song-Yi;Jung, Young-Hee;Oh, Jeong-Seok;Kaang, Shin-Young;Hong, Chang-Kook
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • In this study, in order to develop renewable bio-based nanocomposites, multi-functional nanocomposites from soybean resins (AESO, MAESO) and nanoclay were prepared. Photoelectrodes for environmental friendly dye-sensitized solar cell using soybean resin were also prepared. Organo-modified nanoclay was directly dispersed in functionalized soybean resins after mixing with styrene as a comonomer and radical initiator was used to copolymerize the nanocomposites. The observed morphology was a mixture of intercalated/exfoliated structure and the physical properties were improved by adding nanoclay. A nanocomposite using MAESO, which added COOH functional group to the soybean resin, showed better dispersibility than AESO composites. Ultrasonic treatment of the nanocomposites also improved the physical properties. Nanoporous $TiO_2$ photoelectrode was also prepared using soybean resins as a binder, after acid-treatment of $TiO_2$ surface using nitric acid. Dye-sensitized solar cells were prepared after adsorbing dye molecules on it. The $TiO_2$ photoelectrode prepared using soybean binder had high current density because of increased surface area by improved dispersibility. The photoelectrochemical properties and conversion efficiency of the solar cell were significantly improved using the soybean binder.