Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
Purpose: We compared the effects of newly developed diode laser (Bison 808 nm Diode laser) on the treatment of peri-implantitis with conventional products (Picasso 810 nm Diode laser) by comparing the surface temperature of titanium disc and bacterial sterilization according to laser power. Materials and Methods: The titanium disc was irradiated for 60 seconds and 1 - 2.5 W using diode laser 808 nm and 810 nm. The surface temperature of the titanium disc was measured using a temperature measurement module and a temperature measurement program. In addition, in order to investigate the sterilizing effect according to the laser power, 808 nm laser was irradiated after application of bacteria to sandblasted large-grit acid-etched (SLA) and resorbable blast media (RBM) coated titanium discs. The irradiated disks were examined with scanning electron microscopy. Results: Both 808 nm and 810 nm lasers increased disk surface temperature as the power increased. When the 810 nm was irradiated under all conditions, the initial temperature rise rate, the descending rate, and the temperature change before and after was higher than that of 808 nm. Disk surface changes were not observed on both lasers at all conditions. Bacteria were irradiated with 808 nm, and the bactericidal effect was increased as the power increased. Conclusion: When applying these diode lasers to the treatment of peri-implantitis, 808 nm which have a bactericidal effect with less temperature fluctuation in the same power conditions would be considered safer. However, in order to apply a laser treatment in the dental clinical field, various safety and reliability should be secured.
The heterogeneity of crop transpiration is important to clearly understand the microclimate mechanisms and to efficiently handle the water resource in greenhouses. A computational fluid dynamic program (Fluent CFD version 6.2) was developed to study the internal climate and crop transpiration distributions of greenhouses. Additionally, the global solar radiation model and a crop heat exchange model were programmed together. Those models programmed using
Statement of problem: Peri-implant marginal bone loss is an important factor that affects the success of implants in esthetics and function. Various efforts have been made to reduce this bone loss by improving implant design and surface texture. Previous studies have shown that early marginal bone loss is affected by implant neck designs. Purpose: The purpose of this study was to examine the influence of laser microtexturing of implant collar on peri-implant marginal bone loss. Materials and methods: Radiographical marginal bone loss was examined in patients treated with implant-supported fixed partial dentures. Marginal bone level was examined with 101 implant fixtures installed in 53 patients at three periods(at the time of implantation, prosthetic treatment and 6-month after loading). Four types of implants were examined. The differences of bone loss between implants(ITI standard) with enough biologic width and implants(ITI esthetic plus, Silhouette IC, Silhouette IC Laser-
The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.
A knowledge map describes the network of related knowledge into the form of a diagram, and therefore underpins the structure of knowledge categorizing and archiving by defining the relationship of the referential navigation between knowledge. The referential navigation between knowledge means the relationship of cross-referencing exhibited when a piece of knowledge is utilized by a user. To understand the contents of the knowledge, a user usually requires additionally information or knowledge related with each other in the relation of cause and effect. This relation can be expanded as the effective connection between knowledge increases, and finally forms the network of knowledge. A network display of knowledge using nodes and links to arrange and to represent the relationship between concepts can provide a more complex knowledge structure than a hierarchical display. Moreover, it can facilitate a user to infer through the links shown on the network. For this reason, building a knowledge map based on the ontology technology has been emphasized to formally as well as objectively describe the knowledge and its relationships. As the necessity to build a knowledge map based on the structure of the ontology has been emphasized, not a few researches have been proposed to fulfill the needs. However, most of those researches to apply the ontology to build the knowledge map just focused on formally expressing knowledge and its relationships with other knowledge to promote the possibility of knowledge reuse. Although many types of knowledge maps based on the structure of the ontology were proposed, no researches have tried to design and implement the referential navigation-enabled knowledge map. This paper addresses a methodology to build the ontology-based knowledge map enabling the referential navigation between knowledge. The ontology-based knowledge map resulted from the proposed methodology can not only express the referential navigation between knowledge but also infer additional relationships among knowledge based on the referential relationships. The most highlighted benefits that can be delivered by applying the ontology technology to the knowledge map include; formal expression about knowledge and its relationships with others, automatic identification of the knowledge network based on the function of self-inference on the referential relationships, and automatic expansion of the knowledge-base designed to categorize and store knowledge according to the network between knowledge. To enable the referential navigation between knowledge included in the knowledge map, and therefore to form the knowledge map in the format of a network, the ontology must describe knowledge according to the relation with the process and task. A process is composed of component tasks, while a task is activated after any required knowledge is inputted. Since the relation of cause and effect between knowledge can be inherently determined by the sequence of tasks, the referential relationship between knowledge can be circuitously implemented if the knowledge is modeled to be one of input or output of each task. To describe the knowledge with respect to related process and task, the Protege-OWL, an editor that enables users to build ontologies for the Semantic Web, is used. An OWL ontology-based knowledge map includes descriptions of classes (process, task, and knowledge), properties (relationships between process and task, task and knowledge), and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. Therefore a knowledge network can be automatically formulated based on the defined relationships, and the referential navigation between knowledge is enabled. To verify the validity of the proposed concepts, two real business process-oriented knowledge maps are exemplified: the knowledge map of the process of 'Business Trip Application' and 'Purchase Management'. By applying the 'DL-Query' provided by the Protege-OWL as a plug-in module, the performance of the implemented ontology-based knowledge map has been examined. Two kinds of queries to check whether the knowledge is networked with respect to the referential relations as well as the ontology-based knowledge network can infer further facts that are not literally described were tested. The test results show that not only the referential navigation between knowledge has been correctly realized, but also the additional inference has been accurately performed.
Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.
In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.