This paper proposes a method for expensive black box optimization using radial basis functions (RBFs). The proposed algorithm is a computational strategy that uses a RBF model approximating the expensive black box function to predict an optimum. First, a RBF-based approximation technique is introduced and a sampling plan for estimation of the black box function is described. Then the proposed algorithm is explained, which presents the pseudo-codes for implementation and the detailed description of each step performed in the optimization process. In addition, numerical experiments will be given to analyze the performance of the proposed algorithm, by investigating computation accuracy, number of function evaluations, and convergence history. Finally, geometric distance problem as application example will be also presented for showing the algorithm applicability to different engineering problems.
In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion (FBFE) based on virus evolutionary genetic algorithm(VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter (EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FBFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by identifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.
Journal of the Korean Data and Information Science Society
/
제8권2호
/
pp.163-171
/
1997
공학 분야에서 신경망에 대한 관심은 신호처리, 로보틱스, 컨트롤, 문자인식, 패턴인식 그리고 컴퓨터 그래픽 분야등에서 연구되고 있으며, 이들은 함수근사응용과 밀접한 관련이있다. 통계학 분야에서는 패턴인식의 판별분석, 주성분분석, 회귀분석 그리고 군집분석을 위한 신경망등에 대한 연구가 활발히 이루어지고 있다. 문자인식을 위한 다층 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있으나 이 알고리즘은 긴 훈련기간, 극소점 문제, 이상치(outlier)에 민감하다는 단점을 지니고 있다. 이상치에 민감한 일반적인 역전파 알고리즘의 단점을 극복하기 위해 이상치에 민감하지 않은 로버스트 알고리즘의 필요성이 대두되었다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 제안한 로버스트 역전파 알고리즘을 문자인식에 적용하여 일반적인 역전파 알고리즘의 문자인식 성능과 비교하였다.
철근 콘크리트 뼈대구조는 설계변수가 많고, 목적함수의 제약조건이 복잡하여 주로 반복적인 재해석에 의하여 최적해에 접근하는 방법이 사용되고 있다. 본 연구에서는 다단계분할(multilevel decomposition)에 의하여 최적화 문제를 형성하여 재해석과정을 줄이고 효과적으로 설계변수를 취할 수 있도록 하였다. 최적화의 단계는 첫째 단계에서 비선형거동에 의한 재분배모멘트의 설계공간을 계산하여 설계모멘트에 대한 제약조건식을 형성하고, 둘째 단계에서는 재분배 모멘트를 최적화하였으며, 셋째 단계에서는 설계단면을 최적화하였다. 이때 재분배 모멘트의 최적화에 따른 첫째 단계의 모멘트의 설계공간의 변화는 부재력 변화량 추정(force approximation technique)에 의하여 수정하도록 하며, 변수를 단계별로 줄여 수렴을 가속화시킬 수 있도록 하였다. 최적화 문제의 목적함수로는 경비함수를 취하였으며 영국 CP110의 한계상태설계법을 이용하여 부재의 응력제약조건식을 유도하고, 설계예를 통하여 본 연구의 타당성과 효율성을 구명하였다.
The optimization of many engineering design problems requires a nonlinear programming algorithm that is robust and efficient. A general-purpose nonlinear optimization program IDOL (Interactive Design Optimization Library) is developed based on the Augmented Lagrange Mulitiplier (ALM) method. The ideas of selecting a good initial design point, using resonable initial values for Lagrange multipliers, constraints scaling, descent vector restarting, and dynamic stopping criterion are employed for computational enhancement to the ALM method. A descent vector is determined by using the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method. For line search, the Incremental-Search method is first used to find bounds on the solution, then the bounds are reduced by the Golden Section method, and finally a cubic polynomial approximation technique is applied to locate the next design point. Seven typical test problems are solved to show IDOL efficient and robust.
Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.
Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.
Since recent production system becomes that of the small quantity, large volume with high quality production, accurate and high speed inspection system is required. In such situation, noncontact 3D measurement system which utilized CCD cameras is useful technique in terms of system cost, speed of data acquisition, measuring accuracy and application. However, it has low accuracy compared with contact 3D measurement system because of the camera distortion, non uniformity of laser distribution and so on. For those reasons, in this paper precision enhancement method is studied considering radial camera distortion, and laser distribution. A distortion correction method is applied even to the standard lens. The laser slit beam trajectory is determined by 3 method: based of the Gaussian function signal approximation, the median method, the center of gravity method and the peak point of the Gaussian function method.
Communications for Statistical Applications and Methods
/
제31권3호
/
pp.337-347
/
2024
Kernel density estimation is a prevalent technique employed for nonparametric density estimation, enabling direct estimation from the data itself. This estimation involves two crucial elements: selection of the kernel function and the determination of the appropriate bandwidth. The selection of the bandwidth plays an important role in kernel density estimation, which has been developed over the past decade. A range of methods is available for selecting the bandwidth, including the plug-in bandwidth. In this article, the proposed plug-in bandwidth is introduced, which leverages shifted Chebyshev series-based approximation to determine the optimal bandwidth. Through a simulation study, the performance of the suggested bandwidth is analyzed to reveal its favorable performance across a wide range of distributions and sample sizes compared to alternative bandwidths. The proposed bandwidth is also applied for kernel density estimation on real dataset. The outcomes obtained from the proposed bandwidth indicate a favorable selection. Hence, this article serves as motivation to explore additional plug-in bandwidths that rely on function approximations utilizing alternative series expansions.
본 논문에서는 광범위한 함수 근사성질을 갖고 있는 신경회로망을 이용하여, 시스템의 입출력 조화성분의 선형관계를 표현하기 위해 추정된 전달행렬의 적용범위를 확장할 수 있는 적응 고차조화제어(Higher Harmonic Control, HHC) 기법을 제안하고 있다. 신경회로망의 학습신호는 추정된 전달행렬을 기반으로 계산된 최적제어 이득 값 행렬을 이용하여 구성된다. 내부 안정성을 보장하기 위하여 신경회로망의 가중치 학습방법은 Lyapunov 직접 방법을 이용하여 유도하였다. 6개의 입력과 2개의 출력을 갖는 비선형 시스템에 대한 시뮬레이션 결과를 통해 적응 고차조화제어 기법이 불확실한 전달행렬에 적용 가능함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.