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ABSTRACT: Continuous depth data are often required in applications of both onboard systems and maritim:
simulation. But data available are usually discrete and irregularly distributed. Based on the neuron networl
technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on
Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A
dynamic neuron network system is developed which satisfies both real time and mass processing applications.
Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis
presented. Special process in practical applications such as partition of lager areas, normalization and selectio
of depth contour data are also illustrated.
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1 Introduction

In practical applications such as geometric information systems (Wu 2002), maritime simulation, ship
automation and harbor and waterway design (Shi 2003 and Xiao 2002), etc, we usually need continuous water
depth data. Because of restricted observation measures and limited information resources, the depth data
available are usually discrete and irregularly distributed, such as those either on paper chart or in ECDIS database
(IHO 1996). A systematic approach of interpolation is required for practical purposes. This kind of problem,
known as spatial interpolation, can be addressed using various methods, which include inverse distance weighting,
interpolating polynomials, splines, power and Fourier series fitting and others (Cressie 1993). Some of tte
methods may lack the desired accuracy and some are hard to implement in tow dimensional environment. More
complicated methods like kriging perform well but also need much effort and computer time (Zimmerman 1999).
Neuron networks behave very well in nonlinear function approximation and are worth being investigated.

2 Neuron Network Approaches

2.1 Function Approximation
Let the surface of the sea bottom be denoted by
z=f(xy)
where x and y are horizontal coordinates and z is the water depth. Employing the superior performance of neuron
network for approximating nonlinear functions, f (x,y) can be effectively evaluated by a properly designed
network architecture.

The universal approximation theorem for a nonlinear input-output mapping can be used to solve the problem:

Let ¢o( . ) be a nonconstant, bounded, and monotone increasing continuous function. Let Im0 dencte

mo-dimentional unit hypercube [0,1]'"" . The space of continuous functions on / m, isdenotedby C(/, ). Then,
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given any function f e C (1’”0) and ¢ >0, there exist a integer m, and sets of real constants o,,b;, and wy,

where i=1,2,...m, and j=1,2,...my, such that we may define
F(xl’xz 50 X, )= za#’(z W;X; + b:)
i=l Jj=1
as an approximate realization of the function f{ . ); that is,

IF(xl 3 Xy 0 X )= f (X5 X5 500X, )' <&

forall x,x,,...x,, thatliein the input space.

It can be accepted that the surface of the sea bottom meets the requirement as a continuous function and the

normalized surface function feC(/, ). Selecting logsig as the transfer functions of the neurons meets the need

to be nonconstant, bounded and monotone increasing continuous. To approximate the sea bottom surface,
therefore, we can employ a network architecture as shown in Fig 1. The transfer function of hidden layer is
logsig, and that of output layer, purelin. The free parameter vector of the network is

T _ R 1 1 1,2 2 32
x =[x,x,,.x,]= [w,,,,w,,z,...ws,,k,,bI seeDg W W, By

The charted depth data in a proper
area can be used as training set. The
network is trained by backpropagation
algorithm and the free parameter vector
is modified to approximate effectively
the surface function, f (x,y), of the sea
bottom.

The standard backpropagation
algorithm is popular and easy to

implement. It's converging speed is

slow, however. The heuristic

Fig.1 Fuction approximation BP network

modifications such as the use of
momentum or variable learning rate show some improvements but hardly are satisfactory in practical applications.
Levenberg-Marquardt backpropagation (LMBP) proves to be an effective algorithm. It appears to be the fastest

neuron network training algorithm for moderate number of network parameters (Hagan 1996).

2.2 Function Interpolation

The performance of the backpropagation network approximation generally meets the requirements of
practical application. But the approximation surface usually does not pass through the observed data, which are
used as training data points, and there exist errors over the known data points. In some special applications,

which require accurate value over observed data points, radial-basis function (RBF) network is preferred.
The interpolation problem may be stated: given a set of N different points {x, e R™ |i=1,2,..N} and a

corresponding set of N real numbers {4, e R'[i=1,2,.~N}, find a function F:®™ — %' that satisfies the

interpolation condition:



F(x)=d;, i=1,2,..N
Use the radial-basis function technique and choose a function F that has the following form:

N
F(0 =) well x-x, ) P

where {p(j x - X, D1i=1,2,...N} is a set of N nonlinear functions, known as radial-basis functions, and | - |

denotes a norm. The known data points x e ®™ [ =1,2,...N, are taken as center of the radial-basis functions.

From (1) and (2), we can write:

dw=d
where
Pn P2 o Py
o=|P1 Pz 7 Pw| (g =p(x,~X D ij=12..N)
Pv Prya  Pw
d’ =[d,,d,,..d,],
w’ =[w, Wy, )] 2

By Micchelli theorem , Let x, e ®™ |i=12,.N be a set of distinct points. Then the N-by-N interpolatio

matrix ®, whose ji-th elements is @,;=¢(r ;)= | x,x, | ), is nonsingular (Micchelli 1986). Therefore we ca1
write,
w=''d 3)
Many radial-basis functions are covered by Micchelli theorem. The following ones are commonly applied
(Haykin 1999):
p() = (r* -ty
o) =(r* —c)
2
r
)

20

@(r) = exp(-

where ¢, o are constants.
The architecture of radial-basis
function network for the function

interpolation is shown in Fig.2. The Fig. 2 Ra:im function network
number of neurons on the hidden

layer is identical to the number of data in the training set, N. The w in (2) is the free parameter vector. The
output of the network is (1) and the free parameters are determined by (3).
3 Tests and Implementation Analysis

3.1 Curve Function Test
In order to verify the performance of the network for interpolation, Tests have been performed on a
hyperbolic paraboloid,
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The result of the interpolation is shown in Fig 3. The surface is generated by the radial-basis function network.

z=(

The dark points represent the training data.

Table 1 Interpolated values from the tested function
RBF LMBP (16) LMBP (20)
Output | Error | Output | Error | Output | Error
-0.199 | 0227 | 0.015] 0.049 | 0.034| 0.009| -0.006 | 0.017 | 0.003
-0.133 | -0.234 ] -0.082 | -0.056 | 0.025| -0.090 | -0.009 | -0.079 | 0.003
0012 0418 -0.485| -0.460 | 0.025 | -0.481 0.004 | -0.485 | 0.000
-0.630 | 0.667 | 0350 | 0402 ] 0.052| 0.288| -0.062| 0339 |-0.0/1
0292 [ -0249 | 0.170 | 0.176 | 0.006 | 0.191 0.021 | 0.179 | 0.009
-0.304 | 0.527 | -0.403 | -0.364 | 0.040 | -0.438 | -0.034| -0.401 | 0.002
-0.108 | 0.820 | -1.822 | -1.792 | 0.030 | -1.818 0.004 | -1.827 | -0.004
-0.051 | -0.051 0.003 | 0.028| 0025} 0.002| -0.00I| 0.008 | 0.005
0704 | 0.608 | 0956 ; 0976 | 0.020| 0928 | -0.028| 0961 | 0.005
0446 | 0399 | 0.353] 0367 | 0.014| 0.380 0.027 | 0353 | -0.000
-0.438 | -0.712 | -0.641 | -0.609 | 0.033 ] -0.631 0.010 | -0.645 | -0.004
0512 { -0610 | 0.015} 0.008 ) -0007 | 0.070 0.055 | 0.020 } 0.005
-0.153 | -0953 | -2.430 | -2.426 | 0.005 | -2.428 0.002 | -2.440 | -0.010
0.163 | -0.928 | -2.286 | -2.294 | -0.008 | -2.267 0.020 | -2.287 | 0.000
-0.462 | -0.687 { -0.459 | -0.426 | 0.034 | -0.451 0.009 | -0.466 | -0.007
-0.891 | 0406 2714 2779 | 0065 2685 -0.029| 2719 0.004
-0.382 | -0297 | 0339 | 0375) 0036 0318 | -0.021] 0.337 | -0.002
-0.602 | -0.011 1450 | 1.501 | 0051 1425 -0.025| 1442 |-0.008
-0.156 | -0.171 0016 | 0.044 | 0028 | 0.003 | -0.0/14} 0.018 | 0.00/
-0.961 0312 | 3.425( 3497 0072 3.412 | -0.012 3.421 | -0.004

X y 4

From {(x, y) | -1<x<1, -1<y<1}, we choose 20 data points randomly and get the interpolated value from the
trained RBF and LMBP networks respectively. The results are shown in Table 1. For LMBP results, the numbers
in the parentheses denote the number of neurons in the hidden layer. Table 2 shows the statistical result from
values of 20 000 random data points. The consequence shows that either RBF or LMBP network demonstrates a
good performance and meets the needs in most practical applications.

Table 2 Error of interpolated values

RBF LMBP (16) LMBP (20)
Average 0.025 -0.013 -0.001
Variance 0.057 0.064 0.020




3.2 Chart Area Test
Tests are also made in the chart area shown in Fig.

4. The training and interpolation are implemented s
within the area of the dotted line block. The training !
data set composes the sounding points and selected
points from the isobathic data within the area. Tests
are performed on RBF and LMBP network respectively. o
The results are shown in Fig. 5 and Fig. 6. !
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points. The verification is made directly on the .

For the tests in realistic water area, there are no

training data points and the results are shown in Table  Fig.3 Interpolation of hyperbolic paraboloid
3. "
The interpolated surface of RBF network strictly _
passes though the training data points. It illustrates a high-pass property. Even though the surface of the LMBP
network usually does not pass through the training data points, it shows a good overall performance when th:
number of neurons on the hidden layer is properly chosen (Table 2). We can use cither RBF or LMBP network
depending on the specific practical purposes.
It should be noted that although the surface of RBF network

pass through the training data points, it does not necessarily mean

better overall performance. The high-pass property indicates poor
behavior under disturbances. If there exists errors in the training
data set, the interpolated value will be sensitively affected.
Meanwhile, because the interpolation in its strict sense using RBF
net work requires the number of neurons on hidden layer be identical

to the number of training data points, tremendous memory space and

computer time is needed when the training data set is large. Some
of the modifications to the RBF network architecture can be taken

into consideration.

Fig. 4 Water area for interpolation

(1) When the charted data points are complicatedly
distributed or the bottom surface is especially irregular, the eigenvalue of the interpolation matrix, ®, may be very
large and @ is near to singular state. We can solve or improve such problem by introducing the regularizatio
parameter, A, and the free parameter vector is calculated by

w=(G+A1)''d
where I is a N-by-N identical matrix and G is called Green's matrix. 'the elements of G are determined by

1
G(X,Xi) = cxp(_—_? ” X—X, ”2)
20

The value of A4 is determined according to the practical applications. When A4=0, the strict interpolation is
performed and by increasing A, the smoothing effect of the interpolation is increased accordingly. In practice, we
may always choose sufficiently large 4 to ensure that G+AI is positive definite and therefore invertible.
(2) When the training data set is large, the free parameter vector can be determined by
w=G'd
where G'=(G” G)'G” , G is (Nxmy) green's matrix, N is the number of training data points and m, is the number



of neurons on the hidden layer of the RBF network.

Table 3 Test result of the water area BN e g e e e e .

Chart |  LMBP RBF o I
depth | Output | Error | Output | Error S
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Fig.6 LMBP interpolated surface

3.3 Implementation Remarks
3.3.1 Partitioning of large areas

If the area processed by the network is too large or complicated, the effect of interpolation will decline.
Therefore partition of the large areas is necessary. Either static or dynamic partitioning procedure can be
implemented in accordance with the practical purposes. With static procedure, we divide a larger area into
smaller sub-areas. Network training and interpolation are carried out for each of the sub-areas respectively.
The results are synthesized to get the desired data, for instance, a depth data-grid. We can also arrange an array
of networks for the whole area and train them properly before use. Then for arbitrary points in the area, the
system search for right network for the interpolations. The static procedure works well for such applications as
geographical modeling or information querying. In dynamic procedure, we build a network for an area around
some moving point (e.g. present ship position). When the point moves near to the boundary of the area,
subsequent area and network for interpolation will be built for further use. The dynamic procedure is suitable for
monitoring ship movement as well as real-time simulation of shiphandling operations.
3.3.2 Normalization

Due to the characteristics of /ogsig transfer function and the radial-based functions, normalization of training



data set and input data is preferred. It will make a faster convergence in training and better behavior of the
network. Usually we normalize the coordinate of the area block in domain of [-1.0, 1.0 ], and depth data, [0.0,
1.0]. '
3.3.3 Filtering isobathic data

In navigational char database, for example, I[HO S-57 format database (IHO 1996), there are tow kinds of depth
data, values of sounding points and values for depth contour (isobath). It is reasonable and necessary to incluce
isobathic data in the interpolation. Along the contour the density of isobathic data is usually quite high, however,
and the reliability and accuracy of these data are not necessarily higher than those of soundings. Therefore sore
algorithm of filtering the isobathic data is desired. One of our algorithms is to control the density of isobath .c
data to an similar level of that of sounding data. The isobathic data points is selected so that the followirg
condition is satisfied, ‘

' min(d|d 2 D/~n)

where d=the distance between neighboring data points, D=diagonal distance of the interpolation area and »=tt e
number of sounding points in the area.

4 Conclusions

Properly implemented, the neuron network approach is an effective way for charted depth interpolation. It
is of significance either in information systems or real-time dynamic systems. The methods provided herewith
plays good roles in several projects, such as navigation simulator development and assessment of harbor ard-
waterway design, and successful and satisfied results have been achieved.

Although we focused on the interpolation of charted data. The methods discussed are also effective in
similar applications. It helps solve the problems, for example, in calculating unevenly distributed elements of
current or wind, wave field's distribution (Chen 2002), altitude in 3-D modeling (Hu 2003), land or sea surface
temperature distribution, air pressure distribution etc.. Because of the versatile property of neuron networks,
adaptation to different applications is effortless.

References

[1] Chen, D. and Wang, C., The Wave Field's Distribution Features of the Main Synoptic Systems Affecting Chira
Sea, Journal of Shanghai Maritime University, Vol.23, No.1, 2002.3.

[2] Cressie, N., Statistics for spatial data: John Wiley & Sons, New York, 1993

[3] Hagan, M. T., Demuth, H. B. and Beale, M., Neural Network Design, PWS Publishing Company, US.A,
1996. |

[4] Haykin, S., Neural Networks: A Comprehensive Foundation, 2" Ed. Prentice-Hall, Inc., U. S. A., 1999

[5] Hy, S. and Shi, C., A Study on technical Design of Terrain with 3D in Shiphandling Simulators Developmert,
Journal of Shanghai Maritime University, Vol.24, No.1, 2003.3.

[6] International Hydrographic Organization, [HO Transfer Standard For  Digital =~ Hydrographic =~ Data,
Publication S-57, Edition 3.0, March 1996

7] Micchelli,C.A., Interpolation of Scattered Data: Distance Matrices and Cond itionally Positive Definie
Functions. Constructive Approximation, Vol.2, 1986.

[8] Shi, C., Application and Functional Requirements of Simulator in Harbor and Waterway Design, Journal of
Korean Navigation and Port Research, Vol.26, No.1, March 2002

[9] Wu, X., Principles and Methods of Geographic Information Systems, Publishing House of Electronic Industry,
Beijing, 2002



[10] Xiao, Y., A Study of Ship Form Through Simulation Tests for Shanghai Deep Port, Journal of Shanghai
Maritime University, Vol.23, No.3, 2002.9.

[11] Zimmerman, D., An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance
Weighting, Mathematical Geology, Vol. 31, No. 4, 1999



