• 제목/요약/키워드: fumonisin biosynthesis

검색결과 11건 처리시간 0.036초

Regulation of Fumonisin Biosynthesis in Fusarium verticillioides-Maize System

  • Sagaram Uma Shankar;Kolomiets Mike;Shim Won-Bo
    • The Plant Pathology Journal
    • /
    • 제22권3호
    • /
    • pp.203-210
    • /
    • 2006
  • Fumonisins are a group of mycotoxins produced by a pathogen Fusarium verticillioides in infected maize kernels. Consumption of fumonisin-contaminated maize has been implicated in a number of animal and human illnesses, including esophageal cancer and neural tube defects. Since the initial discovery, chemistry, toxicology, and biology of fumonisins as well as the maize-Fusarium pathosystem have been extensively studied. Furthermore, in the past decade, significant progress has been made in terms of understanding the molecular biology of toxin biosynthetic genes. However, there is a critical gap in our understanding of the regulatory mechanisms involved in fumonisin biosynthesis. Here, we review and discuss our current knowledge about the molecular mechanisms by which fumonisin biosynthesis is regulated in F. verticillioides. In addition, we discuss the impact of maize kernel environment, particularly sugar and lipid molecules, on fumonisin biosynthesis.

Proteomic Comparison of Gibberella moniliformis in Limited-Nitrogen (Fumonisin-Inducing) and Excess-Nitrogen (Fumonisin-Repressing) Conditions

  • Choi, Yoon-E;Butchko, Robert A.E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.780-787
    • /
    • 2012
  • The maize pathogen Gibberella moniliformis produces fumonisins, a group of mycotoxins associated with several disorders in animals and humans, including cancer. The current focus of our research is to understand the regulatory mechanisms involved in fumonisin biosynthesis. In this study, we employed a proteomics approach to identify novel genes involved in the fumonisin biosynthesis under nitrogen stress. The combination of genome sequence, mutant strains, EST database, microarrays, and proteomics offers an opportunity to advance our understanding of this process. We investigated the response of the G. moniliformis proteome in limited nitrogen (N0, fumonisin-inducing) and excess nitrogen (N+, fumonisin-repressing) conditions by one- and two-dimensional electrophoresis. We selected 11 differentially expressed proteins, six from limited nitrogen conditions and five from excess nitrogen conditions, and determined the sequences by peptide mass fingerprinting and MS/MS spectrophotometry. Subsequently, we identified the EST sequences corresponding to the proteins and studied their expression profiles in different culture conditions. Through the comparative analysis of gene and protein expression data, we identified three candidate genes for functional analysis and our results provided valuable clues regarding the regulatory mechanisms of fumonisin biosynthesis.

Identification of Genes Associated with Fumonisin Biosynthesis in Fusarium verticillioides via Proteomics and Quantitative Real-Time PCR

  • Choi, Yoon-E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.648-657
    • /
    • 2008
  • In this study, we used functional genomic strategies, proteomics and quantitative real-time (qRT)-PCR, to advance our understanding of genes associated with fumonisin production in the fungus Fusarium verticillioides. Earlier studies have demonstrated that deletion of the FCC1 gene, which encodes a C-type cyclin, leads to a drastic reduction in fumonisin production and conidiation in the mutant strain (FT536). The premise of our research was that comparative analysis of F. verticillioides wild-type and FT536 proteomes will reveal putative proteins, and ultimately corresponding genes, that are important for fumonisin biosynthesis. We isolated proteins that were significantly upregulated in either the wild type or FT536 via two-dimensional polyacrylamide gel electrophoresis, and subsequently obtained sequences by mass spectrometry. Homologs of identified proteins, e.g., carboxypeptidase, laccase, and nitrogen metabolite repression protein, are known to have functions involved in fungal secondary metabolism and development. We also identified gene sequences corresponding to the selected proteins and investigated their transcriptional profiles via quantitative real-time (qRT)-PCR in order to identify genes that show concomitant expression patterns during fumonisin biosynthesis. These genes can be selected as targets for functional analysis to further verify their roles in $FB_1$ biosynthesis.

$LLC-PK_1$ 세포에서의 퓨모너신 $B_1$에 의해 유도된 스핑고리피드 대사 (Fumonisin $B_1$-induced Alteration of Sphingolipid Metabolism in $LLC-PK_1$ Cells)

  • 유환수;윤여표
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.789-796
    • /
    • 1997
  • The purpose of this study was to determine the effect of sulfinpyrazone on fumonisin $B_1$-induced elevation of free sphingoid bases in LLC-$PK_1$ cells. Fumonis ins are a family of mycotoxins produced by the fungi Fusarium moniliforme which is common contaminant in corn. Fumonisins are also potent inhibiors of sphingosine and sphinganine N-acyltransferases (ceramide synthases), key enzymes in sphingolipid metabolism resulting in the elevation of free sphinganine. The cytosolic concentration of fumonisin B1 was known to be closely proportional to the elevation of free sphinganine in LLC-PK1 cells [Yoo, H.-S., Norred, W.P., Wang, E., Merrill, A.H., Jr., and Riley, R.T. (1992) Toxicol. Appl.Pharmacol. 114. 9-15]. Sulfinpyrazone, an anion transport inhibitor, reduced the elevated level of free sphinganine resulting from fumonisin B1 inhibition of de novo sphingolipid biosynthesis. Fumonisin B1 at a concentration of 20${\mu}$M showed approximately 120pmol/$10^6$ cells relative to 3-10pmol/$10^6$ cells in control cultures, and sulfinpyrazone at a concentration of 200${\mu}$M partially reversed the increased level of free sphinganine induced by fumonisin $B_1$ down to normal level after exposure to fumonisin $B_1$ for 8 to 24hr. However, the reduced effect of sulfinpyrazone on the fumonisin $B_1$-induced elevation of intracellular sphinganine was not shown after 24hr. Fumonisin $B_1$ exposure to LLC-PK1 cells for 36 and 48hr showed approximately 74 and 80pmol per $10^6$ cells relative to 82 and 76pmol,respectively, in fumonisin $B_1$ plus sulfinpyrazone-treated cultures. Sulfinpyrazone-induced less elevation of free sphinganine in confluent cells after exposure to fumonisin $B_1$ suggested that either sulfinpyrazone may block the availability of fumonisin $B_1$ to cells or act on the fumonisin $B_1$ interaction with ceramide synthase.

  • PDF

Geranyllinalool에 의한 LLC-PK1 세포내 스핑고지질 생합성 억제 (Inhibition of de Novo Sphingolipid Biosynthesis by Geranyllinalool in $LLC-PK_1$ Cells)

  • 조양혁;이용문
    • 약학회지
    • /
    • 제43권1호
    • /
    • pp.61-67
    • /
    • 1999
  • Geranyllinalool, a polyisoprenoid compound, was found to block the early biosynthetic pathway of sphingolipids in LLC-PKl cells. Sphinganine, an intermediate in sphingolipid biosynthetic pathway, was abruptly accumulated in LLC-PKl cells at $2{\;}{\mu}M$ of fumonisin B1(FB1), a specific inhibitor of sphinganine N-acyltransferase, for 24 hr. Geranyllinalool lowered the $B_1(FB_1)$, a specific inhibitor of sphinganine N-acyltransferase, for 24 hr. Geranyllinalool lowered th FB1 and $50{\;}\mu$M geranyllinalool. l-Cy-closerine, an inhibitor of serine-palmitoyl transferase, was used as a positive control to evaluate the inhibitory effect of geranyllinalool. These results suggest that geranyllinalool may inhibit the serine-palmitoyl transferase, the first enzyme in de novo sphingolipid biosynthesis, resulting in the altered regulation of sphingolipid metabolism.

  • PDF

Disruption of Sphingolipid Metabolism as a Potential Mechanism of Fumonisin Inhibition of Cell Growth in $LLC-PK_1$ Cells

  • Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Toxicological Research
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 1995
  • Fumonisins are a family of mycotoxins produced by the fungus Fusarium moniliforme which is a common contaminant in corn. Fumonisins are potent inhibitors of sphingosine and sphinganine N-acyltransferase (ceramide synthase), key enzymes in sphingolipid metabolism. The purpose of this study was to provide the evidence that the elevated levels of free sphingoid bases (primarily sphinganine) and depletion of complex sphingolipids were closely related to the inhibition of cell growth in LLC-$PK_1$ cells exposed to fumonisin $B_1$$(\leq 35 {\mu}M)$. Concentrations of fumonisin $B_1$ between 10 and $35 {\mu}M$ were known to inhibit cell growth without cytotoxicity in $LLC-PK_1$ cells (Yoo et al. Toxicol. Appl. Pharmacol. 114, 9-15, 1992). Cells exposed to 35$\mu M$ fumonisin B$_1$ for 48 and 72 hr developed a fibroblast-like (elongated and spindle-shaped) appearance and were less confluent than normal cells. At between 24 and 48 hr after exposure to fumonisin $B_1$ cells were beginning to show the inhibition of cell growth and at 72 hr the number of viable cells in fumonisin-treated cultures was about 50% of concurrent control cultures. During the 24 hr lag period preceding inhibition of cell growth, the free sphinganine levels in cells exposed to $35 {\mu}M$ fumonisin $B_1$ were highly elevated (approximately 230 fold higher than normal cells). The elevated levels of free sphinganine were $435\pm14$$pmoles/{10^6}$ cells at 48 hr and approximately TEX>$333\pm11$$pmoles/{10^6}$ cells in cells exposed to $35{\mu}M$ fumonisin$B_1$ at 72 hr, while the levels of free sphinganine in normal cells were less than 2$pmoles/{10^6}$ cells. Under the same condition, depletion of intracellular complex sphingolipids as a consequence of fumonisin inhibition of de novo sphingolipid biosynthesis and turnover pathway was appeared. Content of free sphingold bases in dividing cells was more elevated than in confluent cells at 24-48 hr after cells were exposed to $20{\mu}M$ fumonisin $B_1$. The dividing cells were showing the inhibition of cell growth at 48-72 hr and $20{\mu}M$ fumonisin $B_1$. The results of this study support the hypothesis that the inhibition of cell growth is very well related to the disruption of sphingolipid metabolism in $LLC-PK_1$ cells.

  • PDF

종 특이 primer를 이용한 옥수수 오염 Fusarium verticillioides의 PCR 검출 (Detection of Fusarium verticillioides Contaminated in Corn Using a New Species-specific Primer)

  • 강미란;김지혜;이승호;류재기;이데레사;윤성환
    • 식물병연구
    • /
    • 제17권3호
    • /
    • pp.369-375
    • /
    • 2011
  • Fusarium verticillioides(완전세대: Gibberella moniliformis)는 Gibberellea fujikuroi 종 복합체에 속하는 식물병원균으로서 옥수수의 줄기와 이삭에 썩음병을 일으킬 뿐 아니라 인축에 중독증을 일으키는 fumonisin 곰팡이 독소를 생산한다. 본 연구의 목적은 옥수수에 주로 발생하는 fumonisin 생성가능 G. fujikuori 종 복합체 소속 Fusarium 곰팡이 중 F. verticillioides와 그 외 F. proliferatum, F. fujikuori 등을 서로 구별할 수 있는 종 특이적 PCR primer 조합을 개발하는 것이다. RNA polymerase II beta subunit 유전자(RPB2)의 염기서열로부터 제작된 특이 primer 조합(RVERT1와 RVERT2)은 우리나라 옥수수에서 분리한 잠재적인 fumonisin 생성 G. fujikuori 종 복합체 균주 중 오직 F. verticillioides로부터 208 bp 크기의 단일 DNA 절편을 증폭하였다. 한편 F. verticillioides를 포함한 모든 조사균주는 fumonisin 생합성에 필수적인 FUM1 유전자를 포함하고 있었다. 개발된 특이 primer 조합의 검출한계는 분석 곰팡이 DNA 0.125 pg/${\mu}l$ 수준이었다. 한편, 같은 primer 조합으로 Fusarium spp.에 오염된 옥수수 시료의 게놈 DNA로부터 F. verticillioides 특이 DNA 절편이 증폭되었다. 이와 같은 결과를 종합할 때, 본 연구에서 개발된 primer 조합은 여러 곡물 시료에 오염되어 있는 F. verticillioides 균주의 검출과 종 동정에 유용하게 사용될 것이다.

Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas

  • Ortiz, Carlos S.;Richards, Casey;Terry, Ashlee;Parra, Joselyn;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.203-211
    • /
    • 2015
  • Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field.

우리나라 벼와 옥수수로부터 분리한 Gibberella fujikuroi 종복합체와 Fusarium commune 소속 균주의 푸모니신 생성능 (Fumonisin Production by Field Isolates of the Gibberella fujikuroi Species Complex and Fusarium commune Obtained from Rice and Corn in Korea)

  • 이수형;김지혜;손승완;이데레사;윤성환
    • 식물병연구
    • /
    • 제18권4호
    • /
    • pp.310-316
    • /
    • 2012
  • Gibberellea fujikuroi (Gf) 종복합체는 최소 15개의 종으로 구성되어 있으며, 대부분 식물에 병을 일으킬 뿐 아니라 푸모니신과 같은 곰팡이독소를 생성한다. 본 연구에서는 우리나라 벼와 옥수수로부터 분리한 Gf 종복합체 소속 야생형 균주의 푸모니신 생성능을 검정하였다. 이들 분석대상 균주는 모두 푸모니신 생합성에 필수적인 polyketide synthase 유전자 FUM1을 가지고 있는 것으로 확인되었다. 총 88주의 Gf 종복합체 소속 균주(55 F. fujikuroi, 10 F. verticillioides, 20 F. proliferatum, 2 F. subglutinans, 1 F. concentricum)와 Gf 종복합체의 근연종인 4주의 F. commune를 쌀 배지에 배양한 후 각 균주의 푸모니신 생성 농도를 HPLC 방법으로 측정하였다. 대부분의 F. verticillioides과 F. proliferatum 균주는 기주 식물에 관계없이 푸모니신 $B_1$($0.5-2,686.4{\mu}g/g$)과 $B_2$($0.7-1,497.6{\mu}g/g$)를 다양한 범위 내에서 생성하였다. 반면 모든 F. fujikuroi을 비롯한 다른 Fusarium spp.의 균주로부터는 푸모니신이 검출되지 않았거나 $10{\mu}g/g$ 이하 수준의 미량만 검출되었다. 흥미롭게도 F. proliferatum과 F. fujikuroi의 경우, 옥수수 유래 균주 집단에서 벼 유래 균주 집단에 비해 상대적으로 고농도 푸모니신 생성 균주의 비율이 높았다. 한편, FUM1 유전자를 함유하고 있는 F. commune의 푸모니신 생성능은 본 연구를 통해 처음 보고된다.

가축의 fumonisin 중독증에 대한 최근 연구 동향 : 종설 (The current status of fumonisin toxicosis in domestic animals: A review)

  • 임채웅;임병무
    • 대한수의학회지
    • /
    • 제35권2호
    • /
    • pp.405-416
    • /
    • 1995
  • 말의 뇌화연증(equine leukoencephalomalacia)과 돼지의 폐수종(porcine pulmonary edema)은 Fusarium에 오염된 옥수수로 인하여 발생되는 것으로 추정되어 왔다. 1988년에 F moniliforme에서 2차 대사산물인 fumonisin $B_1(FB_1)$이 동정되면서 오염된 옥수수와 순수 분리된 $FB_1$으로 두질병이 실험적으로 재현되었고, 말과 돼지 이외의 다른 가축에 대해서도 독성 연구가 진행되고 있다. fumonisins(FBs)는 모든 종에서 간에 독성을 나타내나 종에 따라 주요 독성 장기가 각기 다름이 밝혀지고 있다. FB의 독성 기전에 대해서는 잘 알려지지 않았으나 FB가 sphingolipid 생성과정을 차단함으로써 장기 및 혈중에 sphinganine(SA) : sphingosine(SO)를 증가시키는 것으로 알려졌다. 이는 증가된 SA : SO가 FB 독성의 진단기준이 될 수 있음을 시사하는 것이다. 최근 진행 중인 연구에 의하면, 저용량의 $FB_1$ 급식 투여가 돼지에서 혈중 입자(blood-born particle)에 대한 폐혈관 대식 세포(pulmonary intravascular macrophage)의 탐식 능력을 저하시켜, 세균 감염에 대한 감수성이 증가될 수 있음을 시사하고 있다. Fusarium 속균은 전세계적으로 생산되는 옥수수에서 발생되고 있으며, 우리나라는 사료에 사용되는 옥수수의 절대량을 수입에 의존하고 있는 점을 고려할 때, 허용기준 및 무해용량 등에 대한 관리가 절실하다. 이 논문에서는 최근 연구된 FB에 의한 가축 독성에 대하여 기술하고자 한다.

  • PDF