DOI QR코드

DOI QR Code

Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas

  • Ortiz, Carlos S. (Department of Plant Pathology and Microbiology, Texas A&M University) ;
  • Richards, Casey (Bioenvironmental Sciences Program, Texas A&M University) ;
  • Terry, Ashlee (Bioenvironmental Sciences Program, Texas A&M University) ;
  • Parra, Joselyn (Bioenvironmental Sciences Program, Texas A&M University) ;
  • Shim, Won-Bo (Department of Plant Pathology and Microbiology, Texas A&M University)
  • Received : 2015.02.12
  • Accepted : 2015.04.29
  • Published : 2015.09.01

Abstract

Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field.

Keywords

References

  1. Bacon, C. W. and Nelson, P. E. 1994. Fumonisin production in corn by toxigenic strains of Fusarium moniliforme and Fusarium proliferatum. J. Food Protect. 57:514-521. https://doi.org/10.4315/0362-028X-57.6.514
  2. Clark, W. C. 1976. The environment and the genotype in polymorphism. Zool. J. Linn. Soc.-Lond. 58:255-262. https://doi.org/10.1111/j.1096-3642.1976.tb00831.x
  3. da Silva, V. N., Fernandes, F. M. C., Cortez, A., Ribeiro, D. H. B., de Almeida, A. P., Hassegawa, R. H. and Correa, B. 2006. Characterization and genetic variability of Fusarium verticillioides strains isolated from corn and sorghum in Brazil based on fumonisins production, microsatellites, mating type locus, and mating crosses. Can. J. Microbiol. 52:798-804. https://doi.org/10.1139/w06-029
  4. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevent, F., Dufayard, J. F., Guindon, S., Lescot, M., Claverie, J. M. and Gascuel, O. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36:W465-W469. https://doi.org/10.1093/nar/gkn180
  5. Desjardins, A. E. and Plattner, R. D. 2000. Fumonisin B1-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J. Agr. Food Chem. 48:5773-5780. https://doi.org/10.1021/jf000619k
  6. Desjardins, A. E. 2003. Gibberella from A (venaceae) to Z (eae). Annu. Rev. Phytopathol. 41:177-198. https://doi.org/10.1146/annurev.phyto.41.011703.115501
  7. Duarte, J. M., Santos, J. B. D. and Melo, L. C. 1999. Comparison of similarity coefficients based on RAPD markers in the common bean. Genet. Mol. Biol. 22:427-432. https://doi.org/10.1590/S1415-47571999000300024
  8. Federal Crop Insurance Corporation. 2010. Loss Adjustment Manual (LAM) Standards Handbook: 2010 and succeeding crop years Washington, DC. United States Departmet of Agriculture.
  9. Food and Agriculture Organization of the United Nations. Mycotoxins. In: FAO.org. [http://www.fao.org/food/food-safetyquality/a-z-index/mycotoxins/en/]. Accessed 29 March 2013.
  10. Food and Drug Administration. 2001.Guidance for industry: Fumonisin levels in human foods and animal feeds; Final guidance. Rockville, MD. United States Department of Health and Human Services.
  11. Fraser, J. A. and Heitman, J. 2004. Evolution of fungal sex chromosomes. Mol. Microbiol. 51:299-306. https://doi.org/10.1046/j.1365-2958.2003.03874.x
  12. Fraser, J. A. and Heitman, J. 2005. Chromosomal sex-determining regions in animals, plants and fungi. Curr. Opin. Genet. Dev. 15:645-651. https://doi.org/10.1016/j.gde.2005.09.002
  13. Garcia-Vallve, S., Palau, J. and Romeu, A. 1999. Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol. Biol. Evol. 16:1125-1134. https://doi.org/10.1093/oxfordjournals.molbev.a026203
  14. Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thiel, P. G., Horak, R. M., Vleggaar, R. and Kriek, N. P. J. 1988. Fumonisins - novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54:1806-1811.
  15. Hendricks, K. 1999. Fumonisins and neural tube defects in South Texas. Epidemiology 10:198-200. https://doi.org/10.1097/00001648-199903000-00022
  16. Hofte, H. and Whiteley, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242-255.
  17. Kim, H., Smith, J. E., Ridenour, J. B., Woloshuk, C. P. and Bluhm, B. H. 2011. HXK1 regulates carbon catabolism, sporulation, fumonisin B1 production and pathogenesis in Fusarium verticillioides. Microbiol-SGM 157:2658-2669. https://doi.org/10.1099/mic.0.052506-0
  18. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Oxford: Blackwell Publishing.
  19. Li, W., Dai, S. Y. and Herrman, T. 2012. Mycotoxin analysis in animal feed by LC/MS/MS. Office of the Texas State Chemist, College Station.
  20. Marasas, W. F. O., Miller, J. D., Riley, R. T. and Visconti, A. 2001. Fumonisins-occurrence, toxicology, metabolism and risk assessment. Fusarium: Paul E Nelson Memorial Symposium, 332-359.
  21. Missmer, S. A., Suarez, L., Felkner, M., Wang, E., Merrill, A. H., Rothman, K. J. and Hendricks, K. A. 2006. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Persp. 114: 237-241. https://doi.org/10.1289/ehp.8221
  22. Moller, E. M., Chelkowski, J. and Geiger, H. H. 1999. Speciesspecific PCR assays for the fungal pathogens Fusarium moniliforme and Fusarium subglutinans and their application to diagnose maize ear rot disease. J. Phytopathol. 147:497-508. https://doi.org/10.1111/j.1439-0434.1999.tb03856.x
  23. Munkvold, G. P. and Desjardins, A. E. 1997. Fumonisins in maize: Can we reduce their occurrence? Plant Dis. 81:556-565. https://doi.org/10.1094/PDIS.1997.81.6.556
  24. Munkvold, G. P., Hellmich, R. L. and Rice, L. G. 1999. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 83:130-138. https://doi.org/10.1094/PDIS.1999.83.2.130
  25. National Agricultural Statistics Service. 2012. 2011 Crop production. Washington, DC. Agricultural Statistics Board of the United States Department of Agriculture.
  26. Nelson, P. E., Desjardins, A. E. and Plattner, R. D. 1993. Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Ann. Rev. Phytopathol. 31:233-252. https://doi.org/10.1146/annurev.py.31.090193.001313
  27. Office of the Texas State Chemist. 2012. One sample strategy for aflatoxin risk management in Texas. College Station, TX. Texas A&M University System.
  28. Shelby, R. A., White, D. G. and Bauske, E. M. 1994. Differential fumonisin production in maize hybrids. Plant Dis. 78:582-584. https://doi.org/10.1094/PD-78-0582
  29. Shim, W. B. and Woloshuk, C. P. 1999. Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. FEMS Microbiol. Lett. 177:109-116. https://doi.org/10.1111/j.1574-6968.1999.tb13720.x
  30. Shim, W. B. and Woloshuk, C. P. 2001. Regulation of fumonisin B1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl. Environ. Microbiol. 67:1607-1612. https://doi.org/10.1128/AEM.67.4.1607-1612.2001
  31. Shim, W. B., Flaherty, J. E. and Woloshuk, C. P. 2003. Comparison of fumonisin B1 biosynthesis in maize germ and degermed kernels by Fusarium verticillioides. J. Food Protect. 66:2116-2122. https://doi.org/10.4315/0362-028X-66.11.2116
  32. Smith, D. R. and White, D. G. 1988. Diseases of corn. In: Sprague, G.F. and Dudley, J.W. eds. Corn and Corn Improvement. Madison, WI: American Society of Agronomy, pp. 687-766.
  33. Steenkamp, E. T., Wingfield, B. D., Coutinho, T. A., Zeller, K. A., Wingfield, K. J., Marasas W. F. O. and Leslie J. F. 2000. PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. Appl. Environ. Microbiol. 66:4378-4382. https://doi.org/10.1128/AEM.66.10.4378-4382.2000
  34. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531

Cited by

  1. Mycotoxin: Its Impact on Gut Health and Microbiota vol.8, pp.2235-2988, 2018, https://doi.org/10.3389/fcimb.2018.00060