• Title/Summary/Keyword: fully nonlinear

Search Result 369, Processing Time 0.025 seconds

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.

Evaluation of Nonlinear κ-ε Models on Prediction Performance of Turbulence-Driven Secondary Flows (난류에 의해 야기되는 이차유동 예측성능에 대한 비선형 κ-ε 난류모델의 평가)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1150-1157
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear k-$\varepsilon$models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear k-$\varepsilon$ model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Simulation of Turbulent Flow in a Square Duct with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 따른 정사각형 덕트내 난류유동 수치해석(8권1호 게재논문중 그림정정))

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Two nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear κ-ε model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear κ-ε model of Shih et al.[1] adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Simulation of Turbulent Flow in a Triangular Subchannel of a Bare Rod Bundle with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 의한 봉다발의 삼각형 부수로내 난류유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Three nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a triangular subchannel of a bare rod bundle. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and wall shear stress are compared in details both qualitatively and quantitatively with both each other and experimental data. The nonlinear κ-ε models by Speziale[1] and Myong and Kasagi[2] are found to be capable of predicting accurately noncircular duct flows involving turbulence-driven secondary motion. The nonlinear κ-ε model by Shih et aL.[3] adopted in a commercial code is found to be unable to predict accurately noncircular flows with the prediction level of secondary flows one order less than that of the experiment.

Evaluation of Nonlinear Models on Predicting Turbulence-Driven Secondary Flow (난류에 의해 야기되는 이차유동 예측에 관한 비선형 난류모형의 평가)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1814-1820
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear ${\kappa}-{\epsilon}$ models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF

Prediction of Turbulent Flow in a Square Duct with Nonlinear ${\kappa}-{\epsilon}$ Models (비선형 ${\kappa}-{\epsilon}$ 난류모델에 따른 정사각형 덕트내 난류유동 예측)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1980-1985
    • /
    • 2003
  • Two nonlinear ${\kappa}-{\epsilon}$ models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear ${\kappa}-{\epsilon}$ model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear ${\kappa}-{\epsilon}$ model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF

Simulation of Turbulent Flow in a Square Duct with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 따른 정사각형 덕트내 난류유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • Two nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear κ-ε model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear κ-ε model of Shih et al.[1] adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.

Nonlinear dynamic performance of long-span cable-stayed bridge under traffic and wind

  • Han, Wanshui;Ma, Lin;Cai, C.S.;Chen, Suren;Wu, Jun
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.249-274
    • /
    • 2015
  • Long-span cable-stayed bridges exhibit some features which are more critical than typical long span bridges such as geometric and aerodynamic nonlinearities, higher probability of the presence of multiple vehicles on the bridge, and more significant influence of wind loads acting on the ultra high pylon and super long cables. A three-dimensional nonlinear fully-coupled analytical model is developed in this study to improve the dynamic performance prediction of long cable-stayed bridges under combined traffic and wind loads. The modified spectral representation method is introduced to simulate the fluctuating wind field of all the components of the whole bridge simultaneously with high accuracy and efficiency. Then, the aerostatic and aerodynamic wind forces acting on the whole bridge including the bridge deck, pylon, cables and even piers are all derived. The cellular automation method is applied to simulate the stochastic traffic flow which can reflect the real traffic properties on the long span bridge such as lane changing, acceleration, or deceleration. The dynamic interaction between vehicles and the bridge depends on both the geometrical and mechanical relationships between the wheels of vehicles and the contact points on the bridge deck. Nonlinear properties such as geometric nonlinearity and aerodynamic nonlinearity are fully considered. The equations of motion of the coupled wind-traffic-bridge system are derived and solved with a nonlinear separate iteration method which can considerably improve the calculation efficiency. A long cable-stayed bridge, Sutong Bridge across the Yangze River in China, is selected as a numerical example to demonstrate the dynamic interaction of the coupled system. The influences of the whole bridge wind field as well as the geometric and aerodynamic nonlinearities on the responses of the wind-traffic-bridge system are discussed.