• Title/Summary/Keyword: fully coupled

Search Result 379, Processing Time 0.036 seconds

Mechanical Constitutive Model for Frozen Soil (동토지반에 대한 역학적 구성모델)

  • Shin, Ho-Sung;Kim, Ji-Min;Lee, Jang-Guen;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.85-94
    • /
    • 2012
  • Recently, growing interests in frozen ground have stimulated us to advance fundamental theories and systematic researches on soil behavior under freezing conditions. Unlike the well-established soil mechanics theory, temperature variation and phase change of pore-water cause water migration to cold side, ground heaving, sharp increase in earth pressure, etc., which bring about serious problems in frozen geotechnical structures. Elasto-plastic mechanical constitutive model for frozen/unfrozen soil subjected to fully coupled THM phenomena is formulated based on a new stress variable that is continuous in frozen-unfrozen transitional regions. Numerical simulations are conducted to discuss numerical reliability and applicability of the developed constitutive model: one-dimensional heaving pressure, tri-axial compression test, and one-side freezing tests. The numerical results show that developed model can efficiently describe complex THM phenomena of frozen soil, and they can be utilized to analyze and design the geotechnical structures under freezing conditions, and predict their long-term behavior.

Application of in Utero Electroporation of G-Protein Coupled Receptor (GPCR) Genes, for Subcellular Localization of Hardly Identifiable GPCR in Mouse Cerebral Cortex

  • Kim, Nam-Ho;Kim, Seunghyuk;Hong, Jae Seung;Jeon, Sung Ho;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.554-561
    • /
    • 2014
  • Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors ($LPA_1-LPA_6$). $LPA_1$, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of $LPA_1$ in neuronal migration has not yet been fully elucidated. Here, we delivered $LPA_1$ to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of $LPA_1$. Moreover, these results can be applied to the identification of the localization of $LPA_1$. The subcellular localization of $LPA_1$ was endogenously present in the perinuclear area, and overexpressed $LPA_1$ was located in the plasma membrane. Furthermore, $LPA_1$ in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of $LPA_1$ did not affect neuronal migration, and the protein expression of $LPA_1$ was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of $LPA_1$ in brain development and on the technical advantages of in utero electroporation.

Influence of the stiffness of Vertical Joints on the Behaviour of Precast Shear Walls. Part1. Load Case 1 (연직접합(鉛直接合)의 강성(剛性)이 프리케스트 전단벽(剪斷壁)의 구조적거동(構造的擧動)에 미치는 영향(影響) I. 하중조합(荷重組合) 1에 대하여)

  • Park, Kyung-Ho
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.103-116
    • /
    • 1983
  • Recent developments in multi-storey buildings for residential purpose have led to the extensive use of shear walls for the basic structural system. When the coupled shear wall system is used, joined together with cast-in-place concrete or mortar (or grout), the function of the continuous joints is a crucial factor in determining the safety of L.P. Precast concrete shear wall structures, because the function of the continuous joints(Vertical wall to wall joints) is to transfer froces from one element(shear wall panel) to another, and if sufficient strength and ductility is not developed in the continuous joints, the available strength in the adjoining elements may not be fully utilized. In this paper, the influence of the stiffness of vertical joints(wet vertical keyed shear joints) on the behaviour of precast shear walls is theoretically investigated. To define how the stiffness of the vertical joints affect the load carrying capacity of L.P.Precast concrete shear wall structure, the L.P.Precast concrete shear wall structure is analyzed, with the stiffness of the vertical joints varying from $K=0.07kg/mm^3$(50MN/m/m) to $K=1.43kg/mm^3$(1000MN/m/m), by using the continuous connection method. The results of the analysis shows that at the low values of the vertical stiffness, i.e. from $K=0.07kg/mm^3$(50MN/m/m) to $K=0.57kg/mm^3$(400MN/m/m), the resisting bending moment and shearing force of precast shear walls, the resisting shearing force of vertical joints and connecting beams are significantly affected. The detailed results of analysis are represented in the following figures and Tables.

  • PDF

Numerical Analysis for Nonlinear Static and Dynamic Responses of Floating Crane with Elastic Boom (붐(Boom)의 탄성을 고려한 해상크레인의 비선형 정적/동적 거동을 위한 수치 해석)

  • Cha, Ju-Hwan;Park, Kwang-Phil;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.501-509
    • /
    • 2010
  • A floating crane is a crane-mounted ship and is used to assemble or to transport heavy blocks in shipyards. In this paper, the static and dynamic response of a floating crane and a heavy block that are connected using elastic booms and wire ropes are described. The static and dynamic equations of surge, pitch, and heave for the system are derived on the basis of flexible multibody system dynamics. The equations of motion are fully coupled and highly nonlinear since they involve nonlinear mass matrices, elastic stiffness matrices, quadratic velocity vectors, and generalized external forces. A floating frame of reference and nodal coordinates are employed to model the boom as a flexible body. The nonlinear hydrostatic force, linear hydrodynamic force, wire-rope force, and mooring force are considered as the external forces. For numerical analysis, the Hilber-Hughes-Taylor method for implicit integration is used. The dynamic responses of the cargo are analyzed with respect to the results obtained by static and numerical analyses.

Monitoring and Analyzing Water Area Variation of Lake Enriquillo, Dominican Republic by Integrating Multiple Endmember Spectral Mixture Analysis and MODIS Data

  • Kim, Sang Min;Yoon, Sang Hyun;Ju, Sungha;Heo, Joon
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • Lake Enriquillo, the largest lake in the Dominican Republic, recently has undergone unusual water area changes since 2001 thus it has been affected seriously by local community's livelihood. Earthquakes and seismic activities of Hispaniola plate tectonic coupled with human activities and climate change are addressed as factors causing the increasing. Thus, a thorough study on relationship between lake area changing, and those factors is needed urgently. To do so, this study applied MESMA on MODIS data to extract water area of Lake Enriquillo during 2001 and 2012 bimonthly, with six issues 12-year. MODIS provides high temporal resolution, and its coarse spatial resolution is compensated by MESMA fraction map. The increase in water area was $142.2km^2$, and the maximum lake area was $338.0km^2$ (in 2012). Water areas extracted by two Landsat scenes at two different times with three image classification approaches (ISODATA, MNDWI, and TCW) were used to assess accuracy of MODIS and MESMA results; it indicated that MESMA water areas are same as ISODATA's, less than 0.4%, while the highest difference is between MESMA and TCW, 2.4%. A number of previously formulated hypotheses of lake area change were investigated based on the outcomes of the present study, though none of them could fully explain the changes.

Modeling and Performance Analysis of SCR $DeNO_X$ Catalyst for Reducing $NO_X$ Emissions in Diesel Engine (디젤엔진의 $NO_X$ 저감을 위한 SCR $DeNO_X$ 촉매의 모델링 및 성능해석)

  • Kim, Young-Deuk;Kim, Woo-Seung;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.137-145
    • /
    • 2009
  • The steady-state kinetics of the selective catalytic reduction (SCR) of $NO_X$ with $NH_3$ has been investigated over a commercial ${V_2}{O_5}/TiO_2$ catalyst. In order to account for the influence of transport effects the kinetics are coupled with a fully transient two-phase 1D+1D monolith channel model. The Langmuir-Hinshelwood (L-H) mechanism is adopted to describe the steady-state kinetic behavior of the ${V_2}{O_5}/TiO_2$ catalyst. The reaction rate expressions are based on previously reported papers and are modified to fit the experimental data. The steady-state chemical reaction scheme used in the present mathematical model has been validated extensively with experimental data of selective $NO_X$ reduction efficiency for a wide range of inlet conditions such as space velocity, oxygen concentrations, water concentration, and $NO_2/NO$ ratio. The parametric investigations are performed to examine how the $NH_3$ slip from a SCR $DeNO_X$ catalyst and the conversion of $NO_X$ are affected by the reaction temperature, $NH_3/NO_X$ feed ratio, and space velocity for feed gas compositions with $NO_2/NO_X$ ratios of 0 and 0.5.

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

Low Noise RFIC VCO Based on InGaP/GaAs HBT for WLAN Applications (InGaP/GaAs HBT를 이용한 WLAM용 Low Noise RFIC VCO)

  • 명성식;전상훈;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.145-151
    • /
    • 2004
  • This paper presents a fully integrated 5 GHz band low phase noise LC tank VCO. The implemented VCO is tuned by integrated PN diodes and tuning rage is 5.01∼5.30 GHz with 0∼3 V control voltage. For improved phase noise performance, a LC filtering technique is adapted. The measured phase noise is -87.8 dBc/Hz at 100 kHz offset frequency and -111.4 dBc/Hz at 1 MHz offset frequency which is excellent performance. Moreover phase noise is improved by 5 dB after employing the LC filter. It is the first experimental result in field of InGaP/GaAs HBT VCOs. The figure of merit of the fabricated VCO with LC filter is -172.1 dBc/Hz. It is the best result among 5 GHz InGaP HBT VCOs. Moreover this work shows lower DC power consumption, higher output power and more fixed output power compared with previous 4, 5 GHz band InGaP HBT VCOs.

Thermal Denaturation of the Apo-cyclic AMP Receptor Protein and Noncovalent Interactions between Its Domains

  • Won, Hyung-Sik;Seo, Min-Duk;Ko, Hyun-Suk;Choi, Wahn Soo;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • Cyclic AMP receptor protein (CRP) is allosterically activated by cAMP and functions as a global transcription regulator in enteric bacteria. Structural information on CRP in the absence of cAMP (apo-CRP) is essential to fully understand its allosteric behavior. In this study we demonstrated interdomain interactions in apo-CRP, using a comparative thermodynamic approach to the intact protein and its isolated domains, which were prepared either by limited proteolysis or using recombinant DNA. Thermal denaturation of the intact apo-CRP, monitored by differential scanning calorimetry, revealed an apparently single cooperative transition with a slight asymmetry. Combined with circular dichroism and fluorescence analysis, the thermal denaturation of apo-CRP could be interpreted as a coupled process involving two individual transitions, each attributable to a structural domain. When isolated individually, both of the domains exhibited significantly altered thermal behavior, thus pointing to the existence of non-covalent interdomain interactions in the intact apo-CRP. These observations suggest that the allosteric conformational change of CRP upon binding to cAMP is achieved by perturbing or modifying pre-existing interdomain interactions. They also underline the effectiveness of a comparative approach using calorimetric and structural probes for studying the thermodynamics of a protein.

Evaluation of Landing Impact Characteristics of Sport Shoes in Running by finite Element Analysis (유한요소 해석을 통한 스포츠화의 런닝 시 착지충격 특성평가)

  • Kim, Sung-Ho;Cho, Jin-Rae;Lee, Shi-Bok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2009
  • Recently, intensive research efforts are world-widely forced on the development of sport shoes improving both the injury protection and the playing performance by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the reliable evaluation of the dynamic responses of sport shoes and human foot, particularly the landing impact characteristics. It is because the landing impact force is a main source of unexpected injuries and influences the playing performance in court sport activities. This paper addresses the application of finite element method to the evaluation of landing impact characteristics of barefoot and several representative court sport shoes in running. In order to accurately reflect the coupling effect between human foot and shoes accurately, we construct a fully coupled three-diemensional foot-shoe FEM model which does not rely on the independent experimental data any more. Through the numerical simulation, we assessed the reliability of the numerical FEM model by comparing with the experimental results and investigated the landing impact characteristics, such as GRF, MIF, acceleration and frequency responses, of representative court sport shoes.