• Title/Summary/Keyword: full-scale vehicle crash test

Search Result 15, Processing Time 0.017 seconds

Assessment on the Possibility of Increase of SB5-B Small Car Impact Velocity (SB5-B 소형차 충돌속도의 상향 가능성 평가)

  • Kim, Kee-Dong;Ko, Man-Gi;Joo, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3013-3022
    • /
    • 2013
  • Satisfying the large car impact condition of the high level SB5-B for "SMART Highway" longitudinal barriers, the possibility of increase of the small car impact velocity from 120km/h to 130km/h was investigated. Through computer simulation using input parameters calibrated to full-scale crash test results, various longitudinal semi-rigid barrier models were improved such that for the small car impact speed of 120km/h the change of longitudinal and transverse velocities of the impact vehicle can satisfy the THIV limit. The barrier model determined through this process satisfied the performance assessment criteria for SB5-B impact conditions. Varying the wing angle of slip block-outs of the passed barrier model, the possibility of increase of the small car impact velocity was investigated by FEA and a full-scale crash test was conducted. It has been shown that the possibility to increase the small car impact speed to 130km/h is high if the test facility condition for 130km/h impact velocity is better equipped.

Crashworthiness Study of Sliding Post Using Full Scale Crash Test Data (충돌실험 데이터를 이용한 슬라이딩 지주구조의 감충성능 분석)

  • Jang, Dae-Young;Lee, Sung-Soo;Kim, Kee-Dong;Sung, Jung-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Medium to large post structures installed along the roadside without proper protection can lead to serious vehicle damage and occupant injury at the impact. In North America and Europe, splitting systems such as slip base or breakaway device are used to reduce impacts. But the system has the risk of secondary accident when the splitted post falls down to the traffic or pedestrian. Sliding Post have been proposed as a way to solve this problem. By studying the crash test results of the 1.3ton and 0.9ton vehicle with 60 km/h and 80 km/h to a Rigidly Fixed Post (RFP) and Sliding Post (SP), danger of the conventional RFP and crashworthiness of the SP have been proven. While collision analysis only from the acceleration measured at the center of the vehicle assumes the motion of the post is the same as that of the vehicle, in this paper, by adding high speed film data to the analysis with vehicle acceleration could have separate the post motion from the vehicle motion. It gives better explanations on the movement of post and vehicle in each distinctive time step and provides basics to the crashworthy post design.

Performance Sensitivity of Flexible Barriers to Input Parameters (연성 방호구조물의 입력변수에 대한 동적 퍼포먼스 민감도 분석)

  • Yi, Gyu-Sei
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.13-20
    • /
    • 2010
  • To evaluate the performance of safety apparatus without the full scale crash test, the computer simulation is inevitable. But, to improve the accuracy of computer simulation, it is important to reasonably determine the input parameters in which the interaction of vehicle-guardrail-soil should be accounted for. This study is focused on how to enhance the reliance of the dynamic performance of guardrail obtained by computer simulation. Analyses were done on the sensitivity of output variables to the change of input parameters by using BARRIER VII of which the usefulness was proved on the barrier-vehicle impact analysis. Through the analyses important input parameters, which give sensitive effects to output of computer simulation, are found out, and methods to determine such parameters are suggested to improve the accuracy of simulation.

Data Processing and Numerical Procedures Influencing on Occupant Risk Indices (탑승자 안전지수에 영향을 주는 데이터 처리과정과 수치절차)

  • Kim, Kee-Dong;Ko, Man-Gi;Nam, Min-Kyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.215-226
    • /
    • 2007
  • To verify the performance of roadside barriers, occupant risk indices are calculated from acceleration and angular velocity data of vehicle crash tests. The occupant risk indices to be computed include THIV(Theoretical Head Impact Velocity), PHD(Post-impact Head Deceleration), ASI(Acceleration Severity Index), OIV(Occupant Impact Velocity) and ORA(Occupant Ridedown Acceleration). There is a confusion due to different values of occupant risk indices produced for the same test data because various computational procedures and data processing methods can be applied to compute them. To slove this problem the effects of various numerical procedures and data processing methods on occupant risk indices were investigated. If the sampling rate specified in the guidelines is used for full-scale vehicle crash tests, an interpolation of impact time and numerical integration methods do not result in an appreciable change of THIV and OIV. The way to determine 10msec moving average for PHD and zero offset of data processing should be specified in the guidelines because 10msec moving average and zero offset methods have a significant influence on occupant risk indices.

  • PDF

A Study on Development & Establishment of Performance Evaluation Criteria for Guardrail End Treatments (노측 가드레일용 단부처리시설 성능평가기준 정립 및 개발)

  • Joo, Jae-Woong;Kum, Ki-Jung;Park, Je-Jin;Jang, Dae-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.123-134
    • /
    • 2008
  • Since the end treatments of guardrails installed on domestic roads have the shapes which can easily penetrate and turnover a vehicle, the occupant can be subjected to severe injury when a vehicle impacts the end treatments. In this study, the criteria of performance evaluation for end treatments are suggested which are suitable to domestic road circumstances. Based on the investigation for the installation and studies instances of end treatments, the mechanism of end treatments is examined and the new end treatment suitable to domestic road circumstances is suggested. The suggested end treatment was verified by computer simulation using d LS-DYNA programs and satisfied the suggested performance evaluation criteria for end treatments. And the developed end treatment was verified by full-scale vehicle crash test and satisfied the following three primary appraisal factors of the suggested performance evaluation criteria for end treatments; occupant risk criteria, structural adequacy, and after-collision vehicle trajectory. This study is the first to develop end treatments considering the occupant safety in Korea. Therefore, If the developed end treatments is installed on roads and highways, it can be expected that it will reduce the grave situation of end treatment accidents and increase the safety of roads.

  • PDF