• Title/Summary/Keyword: full-scale experiment

Search Result 238, Processing Time 0.027 seconds

Full-Scale Blasting Experiment and Field Verification Research Using Shock-Reactive Smart Fluid Stemming Materials (고속충격 반응형 스마트유체 전색재료를 적용한 실 규모 발파실험 및 현장실증 연구)

  • Younghun, Ko;Seunghwan, Seo;Youngjun, Jeong;Sanglim, Noh;Sangho, Cho;Moonkyung, Chung
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • Stemming is a process applied to blast holes to prevent gases from escaping during detonation. A stemming material helps confine the explosive energy for longer and increases rock fragmentation. This study developed a stemming material based on a shear-thickening fluid (STF) that reacts to dynamic shock. Two blasting experiments were conducted to Field-verify the performance of the STF-based stemming material. In the first experiment, the pressure inside the blast hole was directly measured based on applying the stemming material. In the second field verification, tunnel blasting was performed, and the blasting results of sand stemming and, that of the STF-based stemming case were compared. The measurement results of the pressure in the blast hole showed that when the STF-based stemming material was applied, the pressure at the top of the blast hole was lower than in the sand stemming case, and the stemming ejection was also lower. The results of the field application verify that the excavation performance of the STF-based stemming case in the tunnel blasting was superior to that of the sand stemming case.

The Real Scale Fire Tests for Vertical Fire Spread Study of External Finishing Material (외벽 마감재료의 수직화재 확산 연구를 위한 실물화재 실험)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Kim, Jung-Hyun;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • To reduce human life and property damage at the fire in a building, it is most critical to control flame spread in the early stage. Fire spread prevention measure generally includes fire resistance performance securing of structure member in the arson zone and use limitation based on combustion performance of finishing material. The latter is most fundamental fire safety design to determine flame spread, but domestic combustion test determines combustion performance by specimen sized fire test method. Thus, there are many restrictions in the determination of combustion performance by composite material such as sandwich panel. Especially, outer finishing material uses a variety of composite material such as dry bit, aluminum composite panel, and metal panel compared to inner finishing material. Therefore, this study would determine vertical fire spread features by a full scaled fire experiment through the test method of ISO 13785-2, an international test standard.

Seismic Experiment of Precast Concrete Exterior Beam-Column Joint Using Bolt Type Connection and Prestressing Method (볼트 접합 및 프리스트레스를 적용한 프리캐스트 콘크리트 보-기둥 외부접합부의 내진실험)

  • Lee, Dong-Joo;Lee, Ju-Dong;Oh, Tae-Soo;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • In this study, experimental research was carried out to investigate the seismic and structural performance of precast concrete exterior beam-column joints using bolt type connection and prestressing method. A total of five full-scale exterior beam-column joints were constructed and tested under reversed cyclic loading, controlled by displacement. Results of the test are as follows: Energy dissipation capacity and pinching phenomenon of PC beam-column joints showed disadvantageous behavior compared to RC beam-column joints. However, drift capacity of the PC joint was excellent. Also, yield mechanism concentrated on embedded nuts was suitable as an exterior beam-column joint of lateral load resistance frame. Additional application of prestressing method was also very effective to control excessive pinching and cracking in the joint region, and thus improved an overall seismic performance of the PC joint.

Feasibility Study of Intermittent Slow Sand Filtration for Agricultural Reuse of Reclaimed Water (농업적 용수재이용을 위한 간헐분사 완속모래여과 하수재처리 효율 평가)

  • 윤춘경;정광욱;함종화;황하선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.160-170
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of intermittent slow sand filtration for agricultural reuse of reclaimed water. The effluent of biofilter for 16-unit apartment was used as influent to the slow sand filtration system at 0.6 $m^3$/day loading rate using 15 seconds spray in every 10 minutes on the about 1 $m^2$ surface area and 0.5 m depth. The influent concentrations of total coliform (TC), fecal coliform (FC) and E. coli were in the range of 10.000 MPN/100 mL. and they were reduced to less than 1,000 MPN/100 mL after filtration with average of 320, 270, and 154 MPN/100 mL, respectively, showing over 95 % removal. Turbidity and SS were improved effectively and their average concentration was reduced to 0.8 NTU and 1.7 mg/L, respectively, and removal rate was about 50 %. Average BOD and COD concentrations were also reduced substantially to 2.6 and 25.8 mg/L with about 55 and 21 % removal rate, respectively. Nutrients removal was relatively low and removal rate for T-N and T-P was low however, remaining nutrients might be beneficial and less concerned in case of agricultural reuse. The concentration of biofilter effluent used in this experiment was in the range of secondary treatment effluent but slightly stronger than the one from existing wastewater treatment plants (WWTPs). Therefore, intermittent slow sand filtration might be also applicable to the effluent from WWTPs as long as its agricultural reuse is available. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, the intermittent slow sand filtration was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper is a preliminary result from pilot study and further investigations are recommended on the optimum design parameters before full scale application.

Paddy Rice Culture Experiment Using Treated Sewage Effluent From Constructed Wetland (인공습지 오수처리수를 이용한 벼재배 실험)

  • 윤춘경;함종화;우선호;김민희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.94-104
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the feasibility of the constructed wetland system for sewage and the effect of treated sewage irrigation on the paddy rice culture and its soil characteristics. The constructed wetland performed well, in that effluent concentrations of pollutants were significantly lower than concentrations of the influent. Median removal efficiencies of BOD$_{5}$ was about 78% and slightly lower during winter. Removal efficiencies form TN and TP were approximately 48 and 21%, respectively, and relatively less effective than that of BOD$_{5}$. Irrigation of treated sewage to paddy rice culture did not affect adversely in both growth and yield of rice. Instead, plots of treated sewage irrigation showed up to 50% more yield in average than the control plot. It implies that treated sewage irrigation might be beneficial to rice culture rather than detrimental as long as it is treated adequately and used properly. Soil was sampled and analyzed before transplanting and after harvesting. pH was slightly increased due to irrigation water, but it may not be concerned as long as the treated sewage is within the normal range. EC was increased in first year but decreased in second year, therefore salts accumulation in the soil could be less concerned. OM and CES was slightly increased, which might be beneficial on growing plants. TN did not show apparent pattern. Available phosphorus was decreased after rice culture, but the quantity of phosphorus(TP-available phosphorus) was rather increased which implies that excessive phosphorus supply may result in phosphorus accumulation in the soil. Overall, the constructed wetland was thought to be an effective sewage treatment alternative, and treated sewage could be reused as a supplemental source of irrigation water for paddy rice culture without causing adverse effect as long as it is treated adequately and used properly. For full-scale application, further investigation should be followed on environmental risk assessment, tolerable water quality, and fraction of supplemental irrigation.ion.

  • PDF

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

Damage detection of subway tunnel lining through statistical pattern recognition

  • Yu, Hong;Zhu, Hong P.;Weng, Shun;Gao, Fei;Luo, Hui;Ai, De M.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • Subway tunnel structure has been rapidly developed in many cities for its strong transport capacity. The model-based damage detection of subway tunnel structure is usually difficult due to the complex modeling of soil-structure interaction, the indetermination of boundary and so on. This paper proposes a new data-based method for the damage detection of subway tunnel structure. The root mean square acceleration and cross correlation function are used to derive a statistical pattern recognition algorithm for damage detection. A damage sensitive feature is proposed based on the root mean square deviations of the cross correlation functions. X-bar control charts are utilized to monitor the variation of the damage sensitive features before and after damage. The proposed algorithm is validated by the experiment of a full-scale two-rings subway tunnel lining, and damages are simulated by loosening the connection bolts of the rings. The results verify that root mean square deviation is sensitive to bolt loosening in the tunnel lining and X-bar control charts are feasible to be used in damage detection. The proposed data-based damage detection method is applicable to the online structural health monitoring system of subway tunnel lining.

Modeling and PID Control of an Electro-Hydraulic Servo System (전기유압 서보시스템의 모델링과 PID 제어)

  • Lee, Se Jin;Kim, Cheol Jae;Kang, Yong Ju;Choi, Soon Woo;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2019
  • The electro-hydraulic training device (TP511) provided by Festo Didactic are widely used, but teaching materials do not include mathematical modeling. Thus, there is a limit for full-scale learning about the electro-hydraulic servo system by using this equipment. In this study, for the purpose of improving students' understanding of the classical control and modern control Festo's electro-hydraulic servo training device (TP511) was mathematically modeled and parameter values were calculated by examining the characteristics of each component. And P, PI, PD, and PID controllers highly used in the industrial field, were designed by using the root locus method to achieve the optimal gains and used for simulation and experiments using the Festo's electro-hydraulic servo training apparatus. The validity of the derived mathematical model and the calculated parameter values were verified through simulation and experiment. It was found that the p control can achieve the control target more effectively than the pid control for Festo's electro-hydraulic servo training system by using the root locus method.

CFD and experiment validation on aerodynamic power output of small VAWT with low tip speed ratio (저속 회전형 소형 수직축 풍력발전기의 공기역학적 출력에 대한 CFD 및 실험적 검증)

  • Heo, Young-Gun;Choi, Kyoung-Ho;Kim, Kyung-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.330-335
    • /
    • 2016
  • In this study, aerodynamic characteristics of the blades of a helical-type vertical axis wind turbine(VAWT) have been investigated. For this purpose, a 100-W helical-type vertical axis wind turbine was designed using a design formulae, and a 3D computational fluid dynamics analysis was performed considering wind tunnel test conditions. Through the results of the analysis, the aerodynamic power output and flow characteristics of a helical blade were confirmed. In order to validate the aerodynamic power output obtained through the analysis, a wind tunnel test was performed by using a full-scale helical-type vertical axis wind turbine. The 3D analysis technique was validated by comparing its results with those obtained from the wind tunnel test.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.