• 제목/요약/키워드: full-scale applications

검색결과 93건 처리시간 0.033초

State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications

  • Jung, H.J.;Spencer, B.F. Jr.;Ni, Y.Q.;Lee, I.W.
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.493-526
    • /
    • 2004
  • Semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds, because they not only offer the reliability of passive control systems but also maintain the versatility and adaptability of fully active control systems. Among the many semiactive control devices, magnetorheological (MR) fluid dampers comprise one particularly promising class. In the field of civil engineering, much research and development on MR fluid damper-based control systems has been conducted since this unique semiactive device was first introduced to civil engineering applications in mid 1990s. In 2001, MR fluid dampers were applied to the full-scale in-service civil engineering structures for the first time. This state-of-the-art paper includes a detailed literature review of dynamic models of MR fluid dampers for describing their complex dynamic behavior and control algorithms considering the characteristics of MR fluid dampers. This extensive review provides references to semiactive control systems using MR fluid dampers. The MR fluid damper-based semiactive control systems are shown to have the potential for mitigating the responses of full-scale civil engineering structures under natural hazards.

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • 제32권1호
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

토목공학에서의 자기유변 유체 감쇠기를 이용한 반능동 제어 시스템: 최신 연구 동향 (Semiactive Control Systems Using MR Fluid Dampers in Civil Engineering Applications: a State-of-the Art Review)

  • 정형조;박규식;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.467-474
    • /
    • 2002
  • Semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds, because they not only offer the reliability of passive control systems but also maintain the versatility and adaptability of fully active control systems. Among the many semiactive control devices, magnetorheological (MR) fluid dampers comprise one particularly promising class. In the field of civil engineering, much research and development on MR fluid damper-based control systems has been conducted since B. F. Spencer first introduced this unique semiactive device to civil engineering applications in mid 1990s. In 2001, MR fluid dampers were applied to the full-scale in-service civil engineering structures for the first time. This state-of-the-art paper includes a detailed literature review of control algorithms considering the characteristics of fm fluid dampers. This review provides references to semiactive control systems using MR fluid dampers. The MR fluid damper-based semiactive control systems are shown to have the potential for mitigating the responses of full-scale civil engineering structures under natural hazards.

  • PDF

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

Estimations for a Uniform Scale Parameter in the Presence of an Outlier

  • Woo, Jungsoo;Lee, Changsoo
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.611-620
    • /
    • 1999
  • We shall propose several estimators and confidence intervals for the scale parameter in a uniform distribution with the presence of a generalized uniform outlier and obtain mean squared errors(MSE) for their proposed estimators. And we shall compare numerical MSE's for the proposed several estimators of the scale parameter. Also we shall compare numerically expected lengths of confidence intervals of the scale parameter in a uniform distribution with the presence of a generalized uniform outlier.

  • PDF

Jackknife Estimates for Parameter Changes in the Weibull Distribution

  • Jungsoo;Changsoo
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.199-210
    • /
    • 2000
  • We shall propose several estimators for the shape and scale parameters I the Weibull distribution based upon the complete or truncated samples when both parameters are functions of a known exposure level and study properties for proposed several estimators

  • PDF

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.

고내식성 용융합금도금강판 적용 교량난간의 충돌성능 평가 (Crashworthiness Evaluation of Bridge Barriers Built with Hot-dip Zinc-aluminium-magnesium Alloy-coated Steel)

  • 노명현
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.171-176
    • /
    • 2016
  • 본 논문은 도로안전시설물의 공용중 부식 발생으로 인한 기능 손실을 줄일 수 있는 방안으로 고내식성 용융합금도금 강판을 적용한 도로안전시설물을 제안한다. 고내식성 용융합금도금강판을 적용한 도로안전시설물 제품에 대한 신뢰성 있는 충돌성능 평가 기초자료를 제공할 목적으로 고내식강이 적용된 교량난간 제품에 대한 충돌 시뮬레이션 및 실물 차량 충돌시험 연구를 수행한다. 시뮬레이션 및 실차충돌 시험 결과, 변형률 속도 의존성을 고려할 수 있는 정교한 동특성 재료모델을 도입한 충돌 시뮬레이션을 통해 얻어지는 충돌 거동과 실물 차량 충돌 시험 결과가 매우 유사한 것으로 도출되었다. 본 논문에서 제안된 고내식성 용융합금도금 강판을 적용한 교량난간은 실물 차량 충돌 시험의 충돌성능 평가 기준을 모두 충족시켜 현장 적용을 앞두고 있다.

Development of a robust bench-scale testing unit for low-pressure membranes used in water treatment

  • Huang, Haiou;Schwab, Kellogg;Jacangelo, Joseph G.
    • Membrane and Water Treatment
    • /
    • 제2권2호
    • /
    • pp.121-136
    • /
    • 2011
  • A bench-scale test has recently been proposed as a predictive tool to minimize the scope of pilot-scale testing or to optimize the operation of full-scale membrane filtration systems. Consequently, a bench-scale testing unit was developed for this purpose and systematically evaluated in this study. This unit was capable of accommodating commercially available, low pressure, hollow fiber (LPHF) membranes with various configurations for testing under conditions comparable to real-world applications. Reproducibility of this unit in assessing membrane fouling and microbial removal efficiency of LPHF membranes was tested and statistically comparable results were obtained. This unit serves as a useful apparatus for academic researchers and utilities to evaluate the performance of LPHF membranes used for water treatment.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.