• Title/Summary/Keyword: full width at half maximum

Search Result 393, Processing Time 0.021 seconds

Fabrication of amorphous carbon thin film using laser ablation technique (레이저 층착법에 의한 비정질 탄소계 박막의 제작)

  • ;;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.484-487
    • /
    • 2001
  • Amorphous carbon thin films were deposited using laser ablation technique on Si(100) substrates at different temperatures. In this study, effects of the substrate temperature on the properties of amorphous carbon films were systematically investigated. The surface morphologic and structural properties of the films were studied by scanning electron microscopy (SEM) and raman spectroscope, respectively. With increasing of the substrate temperature, the surface morphologies were changed singnificantly. Moreover the intensity ratio of D-band and G-band and the full width at half maximum of these bands were dependent on substrate temperatures.

  • PDF

Optimization of Synthetic Parameters for Mesoporous Molecular Sieve MCM-41 Using Surfactant CTAC1

  • 박동호;Cheng, Chi Feng;Jacek Klinowski
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • High quality MCM-41 is prepared from a gel of molar composition SiO2:0.20 CTACl:0.18 TMAOH:25 H2O aged at 20 ℃ for 24 hours before crystallization lasting for 48 hours. The (110) and (200) peaks of XRD pattern of high quality MCM-41 are unusually well resolved and the FWHM (full-width-at-half-maximum) of the (100) peak is 0.13° for as-prepared MCM-41 and 0.21° for calcined one, which indicate well-developed crystals. The properties of the crystal depend on the source and concentration of the reactants and the gel aging time. There is no induction period in the course of the synthesis, which is conveniently monitored by pH measurement. Gel aging, during which a spatial distribution of silicate polyanions and micellar cations is established, is essential for preparing high quality MCM-41. Surfactants with the same cationic organic group but different counteranions change the crystallization behavior. Highly basic gel (pH=12.6) favours the lamellar product; the quality of MCM-41 is lower as insufficient TMAOH is available to dissolve the silica.

Electrical and optical properties of Al and F doped ZnO transparent conducting film by sol-gel method (Sol-gel법에 의한 Al과 F가 첨가된 ZnO 투명전도막의 전기 및 광학적 특성)

  • Lee, Seung-Yup;Lee, Min-Jae;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • Al-doped and F-doped ZnO (ZnO : Al & ZnO : F) thin films were coated onto glass substrate by sol-gel method. These films showed c-axis orientation in common, but different I(002)/[I(002) + I(101)] and FWHM (full width at half-maximum). In particular, the grain size of the ZnO : Al films decreased with the increase in the Al-doping concentration, while for the ZnO : F films the grain siae increased up to F 3 at% and then decreased. For the electrical properties, Hall effect measurement was used. The resistivity of the ZnO : Al films and the ZnO : F films were, respectively, $2.9{\times}10^{-2}{\Omega}cm$ at Al 1 at% and $3.3{\times}10^{-1}{\Omega}cm$ at F 3 at%. Moreover compared with ZnO:Al films, ZnO:F films have lower carrier concentration (ZnO : Al $4.8{\times}10^{18}cm^{-3}$, ZnO : F $3.9{\times}10^{16}cm^{-3}$) and higher mobility (ZnO : Al $45cm^2/Vs$, ZnO : F $495cm^2/Vs$). For average optical transmittances, ZnO : Al thin films have $86{\sim}90%$ and ZnO : F films have $77{\sim}85%$ comparatively low.

Investigation of Scatter and Septal Penetration in I-131 Imaging Using GATE Simulation (GATE 시뮬레이션을 이용한 I-131 영상의 산란 및 격벽통과 보정방법 연구)

  • Jung, Ji-Young;Kim, Hee-Joung;Yu, A-Ram;Cho, Hyo-Min;Lee, Chang-Lae;Park, Hye-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.72-79
    • /
    • 2009
  • Scatter correction for I-131 plays a very important role to improve image quality and quantitation. I-131 has multiple and higher energy gamma-ray emissions. Image quality and quantitative accuracy in I-131 imaging are degraded by object scatter as well as scatter and septal penetration in the collimator. The purpose of this study was to estimate scatter and septal penetration and investigate two scatter correction methods using Monte Carlo simulation. The gamma camera system simulated in this study was a FORTE system (Phillips, Nederland) with high energy, general-purpose, parallel hole collimator. We simulated for two types of high energy collimators. One is composed of lead, and the other is composed of artificially high Z number and high density. We simulated energy spectrum using a point source in air. We estimated both full width at half maximum (FWHM) and full width at tenth maximum (FWTM) using line spread function (LSF) in cylindrical water phantom. We applied two scatter correction methods, triple energy window scatter correction (TEW) and extended triple energy window scatter correction (ETEW). The TEW method is a pixel-by pixel based correction which is easy to implement clinically. The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection window, which can overestimate or the underestimate scatter. The both FWHM and FWTM were estimated as 41.2 mm and 206.5 mm for lead collimator, respectively. The FWHM and FWTM were estimated as 27.3 mm and 45.6 mm for artificially high Z and high density collimator, respectively. ETEW showed that the estimation of scatter components was close to the true scatter components. In conclusion, correction for septal penetration and scatter is important to improve image quality and quantitative accuracy in I-131 imaging. The ETEW method in scatter correction appeared to be useful in I-131 imaging.

  • PDF

Frequency Swept Laser at 1300 nm Using a Wavelength Scanning Filter Based on a Rotating Slit Disk

  • Jeon, Man-Sik;Jung, Un-Sang;Song, Jae-Won;Kim, Jee-Hyun;Oh, Jung-Hwan;Eom, Jin-Seob;Kim, Chang-Seok;Park, Young-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.330-334
    • /
    • 2009
  • A simple and compact frequency swept laser is demonstrated at $1.3{\mu}m$ using a wavelength scanning filter based on a rotating slit disk. The laser is comprised of a pigtailed semiconductor optical amplifier, a circulator, and a wavelength scanning filter in an extended cavity configuration. The wavelength scanning filter is composed of a collimator, a diffraction grating, a rotating slit disk, and a mirror. The instantaneous laser output power is more than 5 mW. The scanning range of the laser is extended to 80 nm at the maximum level, and 55 nm in the full width at half maximum at a scanning rate of 2 kHz.

Influence of the thermal preheating for the GaAs(100) substrate exerted on ZnTe epilayer (GaAs(100) 기판에 대한 열에칭이 ZnTe 에피층에 미치는 영향)

  • 남성운;유영문;오병성;이기선;최용대;정호용
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.348-354
    • /
    • 1998
  • To investigate an influence of the thermal preheating for the substrates exerted on the heteroepilayers, the ZnTe epilayers are grown on the GaAs (100) at the substrate temperature of 450~$630^{\circ}C$ by hot wall epitaxy (HWE). For this purpose, double crystal rocking curve (DCRC) and photoluminescence (PL) are measured. The full width at half maximum of DCRC are the smallest in the ZnTe epilayers grown on the GaAs thermally etched at around both $510^{\circ}C$ and $590^{\circ}C$. However, at around $550^{\circ}C$ they increase due to the reconstruction of the atoms in the surface. And they increase due to the oxide layer at below $490^{\circ}C$ and due to the surface defects at above $610^{\circ}C$. From PL analysis, the full width at half maximum of the light hole exciton $X_{1s,th}$ and of the second-order Raman line increase at around $550^{\circ}C$. With the increasing preheating temperature, the intensities of Y-bands and of the oxygen bound exciton (OBE) peak related to an oxide layer on the GaAs surface generally decrease. From these experimental results, it's confirmed that the GaAs substrate thermally etched influences the ZnTe pilayers.

  • PDF

The Effect of Acoustic Velocity of Ultrasonographic Equipment Using an N-365 Multipurpose Phantom (N-365 다목적팬텀에서 초음파진단장치의 음속변화 효과)

  • Kim, Yon-Min;Shim, Jae-Goo;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.221-225
    • /
    • 2017
  • To evaluate the performance of ultrasound imaging system, we investigated the change of spatial resolution according to changing sonic velocity change parameter provided by ultrasound equipment. Ultrasound phantom images were obtained using a 3.0 ~ 5.0 MHz convex transducer in an ultrasound diagnostic device used at a medical institution located at Iksan. N-365 multi-purpose ultrasound phantom was used to measure longitudinal distance measurement accuracy and longitudinal and transverse resolution. In the same manner, the sonic velocity of the ultrasound equipment was changed from 1580 m/sec to 1400 m/sec in six steps, and the full width at half maximum(FWHM) was measured using the image J program to determine whether the measured values were different. As a result, lateral resolution was measured from 1.91 mm to 5.3 mm according to the speed change, and the smallest FWHM was 1.91 mm at 1420 m/sec. The axial resolution was measured from 1.03 mm to 1.14 mm according to the speed change, and the smallest FWHM was 1.03 mm at 1400 m/sec. The slower the sound velocity of the ultrasound equipment, the shorter the length of longitudinal measurement.

Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction (X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석)

  • Choi, Jinsam;Park, Kyu Yeol;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.264-270
    • /
    • 2019
  • As a case study on aspect ratio behavior, Kaolin, zeolite, $TiO_2$, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ${\sim}6{\mu}m$ are shifted to submicron size, D50 ${\sim}0.6{\mu}m$, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Evoked Potential Estimation using the Iterated Bispectrum and Correlation Analysis (Bispectrum 및 Correlation 을 이용한 뇌유발전위 검출)

  • Han, S.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.113-116
    • /
    • 1994
  • Estimation of the evoked potential using the iterated bispectrum and cross-correlation (IBC) has been tried for both simulation and real clinical data. Conventional time average (TA) method suffers from synchronization error when the latency time of the evoked potential is random, which results in poor SNR distortion in the estimation of EP waveform. Instead of EP signal average in time domain, bispectrum is used which is insensitive to time delay. The EP signal is recovered by the inverse transform of the Fourier amplitude and phase obtained from the bispectrum. The distribution of the latency time is calculated using cross-correlation between EP signal estimated by the bispectrum and the acquired signal. For the simulation. EEG noise was added to the known EP signal and the EP signal was estimated by both the conventional technique and bispectrum technique. The proposed bispectrum technique estimates EP signal more accurately than the conventional technique with respect to the maximum amplitude of a signal, full width at half maximum(FWHM). signal-to-noise-ratio, and the position of maximum peak. When applied to the real visual evoked potential(VEP) signal. bispectrum technique was able to estimate EP signal more distinctively. The distribution of the latency time may play an important role in medical diagonosis.

  • PDF

Synthesis of p-Type ZnO Thin Film Prepared by As Diffusion Method and Fabrication of ZnO p-n Homojunction

  • Kim, Deok Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.372-375
    • /
    • 2017
  • ZnO thin films were deposited by RF magnetron sputtering and then diffused by using an As source in the ampouletube. Also, the ZnO p-n homojunction was made by using As-doped ZnO thin films, and its properties were analyzed. After the As doping, the surface roughness increased, the crystal quality deteriorated, and the full width at half maximum was increased. The As-doped ZnO thin films showed typical p-type properties, and their resistivity was as low as $2.19{\times}10^{-3}{\Omega}cm$, probably because of the in-diffusion from an external As source and out-diffusion from the GaAs substrate. Also, the ZnO p-n junction displayed the typical rectification properties of a p-n junction. Therefore, the As diffusion method is effective for obtaining ZnO films with p-type properties.