• Title/Summary/Keyword: full scale experiments

Search Result 189, Processing Time 0.024 seconds

Hydrogen Sulfide Removal in Full-scale Landfill Gas Using Leachate and Chelated Iron (침출수 및 철킬레이트를 이용한 실규모 매립가스 내 황화수소 제거)

  • Park, Jong-Hun;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.51-56
    • /
    • 2019
  • $H_2S$ is a detrimental impurity that must be removed for upgrading biogas to biomethane. This study investigates an economic method to mitigate $H_2S$ content, combining scrubbing and aeration. The desulfurization experiments were performed in a laboratory apparatus using EDTA-Fe or landfill leachate as the catalyst and metered mixture of 50-52% (v/v) $CH_4$, 32-33% (v/v) $CO_2$ and 500-1,000 ppmv $H_2S$ balanced by $N_2$ using the C city landfill gas. Dissolved iron concentration in the liquid medium significantly affected the oxidation efficiency of sulfide. Iron components in landfill leachate, which would be available in a biogas/landfill gas utilization facility, was compatible with an external iron chelate. More than 70% of $H_2S$ was removed in a contact time of 9 seconds at iron levels at or over 28 mM. The scrubbing-aeration process would be a feasible and easy-to-operate technology for biogas purification.

Shaking table tests on seismic response of backdrop metal ceilings

  • Zhou, Tie G.;Wei, Shuai S.;Zhao, Xiang;Ma, Le W.;Yuan, Yi M.;Luo, Zheng
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.807-819
    • /
    • 2019
  • In recent earthquakes, the failure of ceiling systems has been one of the most widely reported damage and the major cause of functionality interruption in some buildings. In an effort to mitigate this damage, some scholars have studied a series of ceiling systems including plaster ceilings and mineral wool ceilings. But few studies have involved the backdrop metal ceiling used in some important constructions with higher rigidity and frequency such as the main control area of nuclear power plants. Therefore, in order to evaluate its seismic performance, a full-scale backdrop metal ceiling system, including steel runners and metal panels, was designed, fabricated and installed in a steel frame in this study. And the backdrop metal ceiling system with two perimeter attachments variants was tested: (i) the ends of the runners were connected with the angle steel to form an effective lateral constraint around the backdrop metal ceiling, (ii) the perimeter attachments of the main runner were retained, but the perimeter attachments of the cross runner were removed. In the experiments, different damage of the backdrop metal ceiling system was observed in detail under various earthquakes. Results showed that the backdrop metal ceiling had good integrity and excellent seismic performance. And the perimeter attachments of the cross runner had an adverse effect on the seismic performance of the backdrop metal ceiling under earthquakes. Meanwhile, a series of seismic construction measures and several suggestions that need to be paid attention were proposed in the text so that the backdrop metal ceiling can be better applied in the main control area of nuclear power plants and other important engineering projects.

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang;Dae-Kun Kwon;Jungtae Noh;Ahsan Kareem
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.221-236
    • /
    • 2023
  • The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.

A Method to Adjust Cyclic Signal Length Using Time Invariant Feature Point Extraction and Matching(TIFEM) (시불변 특징점 추출 및 정합을 이용한 주기 신호의 길이 보정 기법)

  • Han, A-Hyang;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.111-122
    • /
    • 2010
  • In this study, a length adjustment algorithm for cyclic signals in manufacturing process using Time Invariant Feature point Extraction and Matching(TIFEM) is proposed. In order to precisely compensate the length of cyclic signals which have irregular length in the middle of signal as well as in the full length more feature points are needed. The extracted feature must involve information about the pattern of signal and should have invariant properties on time and scale. The proposed TIFEM algorithm extracts features having the intrinsic properties of the signal characteristics at first. By using those extracted features, feature vector is constructed for each time point. Among those extracted features, the only effective features are filtered and are chosen such as basis for the length adjustment. And then the partial length adjustment is performed by matching feature points. To verify the performance of the proposed algorithm, the experiments were performed with the experimental data mimicking the three kinds of signals generated from the actual semiconductor process.

Suitability Analysis of Non-contact Sensing Methods for Precast Concrete Element Flatness Inspection (프리캐스트 콘크리트 부재의 평탄도 검사를 위한 센싱 기반 측정방법 적합도 비교)

  • Kwon, Soon-Ho;Kim, Jeong Seop;Sim, Sung-Han;Kim, Minkoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.52-59
    • /
    • 2023
  • Flatness inspection of PC elements is normally conducted manually by inspectors at manufacturing sites. However, the manual inspection is error-prone and subjective, so it is necessary to develop a robust and efficient flatness measurement method. Recently, a few studies of laser scanner-based flatness inspection have been conducted. However, little attention on field applicability in terms of accuracy, time and cost has been paid. To tackle the limitation, this study aims to compare three sensing method including floor profiler, terrestrial laser scanner and total station for flatness inspection of PC elements. A series of experiments on two full-scale PC slabs were conducted and the results show that the laser scanning method is the most suitable for the PC elements flatness inspection in the aspects of accuracy, time and cost.

A computer vision-based approach for crack detection in ultra high performance concrete beams

  • Roya Solhmirzaei;Hadi Salehi;Venkatesh Kodur
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.341-348
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has received remarkable attentions in civil infrastructure due to its unique mechanical characteristics and durability. UHPC gains increasingly dominant in essential structural elements, while its unique properties pose challenges for traditional inspection methods, as damage may not always manifest visibly on the surface. As such, the need for robust inspection techniques for detecting cracks in UHPC members has become imperative as traditional methods often fall short in providing comprehensive and timely evaluations. In the era of artificial intelligence, computer vision has gained considerable interest as a powerful tool to enhance infrastructure condition assessment with image and video data collected from sensors, cameras, and unmanned aerial vehicles. This paper presents a computer vision-based approach employing deep learning to detect cracks in UHPC beams, with the aim of addressing the inherent limitations of traditional inspection methods. This work leverages computer vision to discern intricate patterns and anomalies. Particularly, a convolutional neural network architecture employing transfer learning is adopted to identify the presence of cracks in the beams. The proposed approach is evaluated with image data collected from full-scale experiments conducted on UHPC beams subjected to flexural and shear loadings. The results of this study indicate the applicability of computer vision and deep learning as intelligent methods to detect major and minor cracks and recognize various damage mechanisms in UHPC members with better efficiency compared to conventional monitoring methods. Findings from this work pave the way for the development of autonomous infrastructure health monitoring and condition assessment, ensuring early detection in response to evolving structural challenges. By leveraging computer vision, this paper contributes to usher in a new era of effectiveness in autonomous crack detection, enhancing the resilience and sustainability of UHPC civil infrastructure.

Changes in Variety and Cultural Practices of Soybean, Sweet Potato and Corn Since 1962 in Korea (하전작물 품종 및 재배기술의 1962년 이후 변천)

  • Keun-Yong Park;Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.462-469
    • /
    • 1982
  • Since 1962, varietal development and dissemination for summer upland crops have been actively initiated by the Crop Experiment Station, Office of Rural Development, Suweon, Korea. The major breeding objectives of soybeans have been to develop varieties which are early maturing, disease resistant, and adaptable to late planting for after-barley cropping. Development of eleven new soybean varieties including Hwangkeumkong, Jangyeobkong, Danyeobkong, and Kwangkyo has greatly increased the soybean yield throughout country. For com, after development of Hwangok #2, a synthetic, in early 1960's, nine corn hybrids-single crosses, double-crosses, and three-way crosses-such as Jecheon-ok, Hoengseong-ok, Kwangok, Suweon #19, etc., have been disseminated mainly to Kangweon province, a major corn producing area in Korea, and drew up the yield over 4 tons per hectare. The major breeding objectives of sweet potato have been to develop varieties which have high starch content and root yield. Hwangmi, Hongmi, and Shinmi are three sweet potato varieties developed and disseminated by the Crop Experiment Station, Office of Rural Development and are grown most widely in Korea. Most of researches on cultural practices of upland crops have begun on a full scale from early 1960's. In soybeans, for example, no fertilizer but for barley was applied although the effects of phosphate and potassium fertilizers were great on soybeans in after-barley soybean croppings. The effects of heavy application of phosphate and calcium fertilizers on soybeans in newly reclaimed soils were recognized. Recently a mixed fertilizer for soybean (N; 40, P:70, K:60 kg/㏊) was developed and sold for soybean growers. The optimum planting densities of 220, 000 plants/ha in full-season cropping and 330, 000 pts/ha in after-barley cropping of soybeans were known from repeated experiments. For higher yield, a means of cultural practices such as transplanting-pinching, direct planting-pinching, and hilling-up, etc., were developed along with barley-stubble planting with no tillage and integrated herbicide application for labour savings. For sweet potato, cultural practices for planting date, harvesting date, fertilizer, and planting density were fully established. For early marketing, a technique of vinyl-mulching on sweet potato has also fully developed. For com, planting density of 37, 000 pts/ha in early 1960's has been changed to 55, 000 pts/ha for grain production and 67, 000 pts/ha for silage. The amounts of fertilizers have also been changed from 120-120-120kg/ha (N-P-K) in early 1960s to 180-150-150 kg/ha. These increases in number of plants per unit area and fertilizer levels have resulted in greater production for both grain and silage. At the same time, the production techniques of F1 seeds have also improved.

  • PDF

Development of Fishing Gear and Operating System in Purse Seine Fishery for Gizzard-shad(II) - Model Experiments for Improvement of the Net - (전어 선망 어구 및 조업 시스템 개발 (II) - 어구 개량을 위한 모형 실험 -)

  • 장덕종;김진건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.326-336
    • /
    • 2003
  • In order to modify the construction of gizzard shad coastal purse seine net with possible to the laborsaving of fishing operation in the coastal small fishing vessels, the model experiments were carried out on the model nets for several conventional nets using in the field and the experimental nets was manufactured as 1/100 and 1/60 of the full scale net. The results obtained are summarized as follows;1. In the case of the conventional net and reduction rate 75% in conventional net with purse line the fishing efficiency decreased, the lead line was upward for the surface and the pursing depth of pursing line was very shallow to 2∼3m. 2. In the case of the net having maximum depth in center part designed in this study, the length of float and lead line was 60% of conventional net, the depth of net was fixed 20m to selvage line of the both of the end and extend gradually with 50m, 40m, 30m to the center. Among the these net, depth of pursing line was 20∼23m for 50m and 7∼15m for 40m, 30m the depth of net. These results were suitable for interception of fish school in fishing ground, but several problems will be caused by the depth and current of fishing ground.

An Experimental Study on the Behavior of Small Scale Curved Panel Using Composite Materials (복합소재를 활용한 곡면 패널 축소형 실험체의 구조 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • FRP is a new material that is light, has high strength and high durability, and is emerging as a third construction material inside and outside of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. Because a small composite panel specimen is smaller than a full-size specimen, it can be used in a variety of experiments under different conditions. Therefore, in this study, experiments were performed on a void section, a solid section, a connected solid section, and a sand-coating solid section. The results of the experiment show that the connection of composite curved panels with longitudinal connections provides almost equivalent performance to that of a single panel. However, it is necessary to strengthen the connections, since the connections that are most susceptible to damage will break first.

Inelastic Analysis of Steel-Concrete Composite Column with Non-Compact Steel Section (비조밀단면을 가진 SC 합성 기둥의 비선형 해석)

  • Oh, Myoung Ho;Jang, Tae Young;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.63-71
    • /
    • 2005
  • There were already several studies conducted on the steel-concrete (SC) composite column, which was developedcomplement the weaknesses and maintain the advantages of previous composite columns. The axial compressive capacity of the SC composite column was estimated by the tests in previous studies, but the experiments for the large-scale column could not be performed because of the limitation with the laboratory's capacity. In this study, the analytical study was performed using the general finite element analysis program to reflect the interaction of concrete and steel and the local buckling of steel flange composed of the non-compact section. The appropriateness of the analytical model was verified by the comparison between experimental and analytical results. The nonlinear behavior of full-scale SC composite column was analyzed using the verified analytical model. From these analytical studies, it was concluded that the width-to-thickness ratio of the steel cross-section of the SC composite column should not exceed 25:0. The section area of the link is best when it is over 0.025 dt, and the link distance is to be less than D/2 or 300mm.