• Title/Summary/Keyword: full factorial

Search Result 173, Processing Time 0.017 seconds

A Study of Optimal Lotion Manufacturing Process Containing Angelica gigas Nakai Extracts by Utilizing Experimental Design and Design Space Convergence Analysis (실험 설계와 디자인 스페이스 융합 분석을 통한 Angelica gigas Nakai 추출물을 함유한 로션 제조의 최적 공정 연구)

  • Pyo, Jae-Sung;Kim, Hyun-Jin;Yoon, Seon-hye;Park, Jae-Kyu;Kim, Kang-Min
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.132-140
    • /
    • 2022
  • This study was conducted to identify the optimal lotion manufacturing conditions with decursin and decursinol angelate of Angelica gigas Nakai extraction. Lotion was confirmed that it had viscosity (5,208±112 cPs), assay (99.71±1.01%), and pH (5.62) for 3 months. The optimization of manufacturing conditions of mixing 4 for lotion formulation were made by 22+3 full factorial design. Mixing temperature (40-80℃) and mixing time (10-30 min) were used as independent variables with three responses(assay, pH, and weight variation) as critical quality attributes (CQAs). The model for assay and weight variation identified a proper fit having a determination coefficient of the regression equation (about 0.9) and a p-value less than 0.05. Estimated conditions for the optimal manufacturing process of lotion were 61.93℃ in mixing temperature and 15.85 min in mixing time. Predicted values at the mixing temperature (60℃) and mixing time (20 min) were 100.69% of assay, 5.57 of pH, and 98.07% of weight variation. In the verification of the actual measurement the obtained values showed 100.29±0.98% of assay, 5.57±0.02 of pH, and 98.27±0.89% of weight variation, respectively, in good agreement with predicted values.

Effects of Precombustion Chamber Shape on the Start ability of Small Diesel Engine under the Cold Weather (소형(小型) 디젤엔진의 예연소실(豫燃焼室) 형상(形狀)이 냉시동성(冷始動性)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Moon, Gyeh Song;Kim, Yong Whan;Lee, Seung Kyu
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.9-19
    • /
    • 1982
  • The aim of this study was to improve the startability of the diesel engine at low temperature. The specific objective was to determine the optimum type of precombustion chamber. The eight different types of precombustion chamber and two different types of the cylinder head were designed and tested by $2^7$ factorial experiments with four replications. The lowest starting temperature for first operation, the maximum output, and the specific fuel consumption at full load and overload were checked and analyzed. The results of the study are summarized as follows; 1. The lowest starting temperature was lowered as much as $2.4^{\circ}C$ and the maximum output was increased as much as 0.3 ps with respect to the difference in the relative angle of the main passageway against the piston head from 20 degree to 18 degree. 2. The lowest starting temperature and the maximum out-put were lowered as much as $3.3^{\circ}C$ and 0.3 ps respectively with respect to the difference in the angle of the cylinder head groove from 20 degree to 18 degree. 3. The lowest starting temperature and the maximum out put were lowered as much as $2^{\circ}C$ and 0.2 ps respectively with respect to the difference in the length of the precombustion chamber from 17.5 mm to 15.5mm. 4. There was no significant difference in the startability but the maximum output was increased as much as 0.2 ps with respect to the difference in the diameter of the main passageway from 4.8mm to 4.5mm. 5. The lowest starting temperature was obtained under the condition at 47 degree in the angle of the main passageway and at 18 degree in the angle of the cylinder head groove. The maximum output and the minimum specific fuel consumption was obtained under the condition at 4.5mm in the diameter of the main passageway and at 17.5mm in the length of the precombustion chamber. 6. The angle of the cylinder head groove and the main passageway appeared to the major factors affecting the startability significantly. The interaction between the diameter of the main pass ageway and the length of the precombustion chamber had an significant influence on the maximum output. So it would be recommended to study further on the interaction between two factors mentioned above by expanding their levels. 7. The optimum condition suggested by this study could lower the starting temperature by $6^{\circ}C$ compared to the conventional precombustion chambers.

  • PDF

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.