• Title/Summary/Keyword: full density curve

Search Result 25, Processing Time 0.04 seconds

IMPROVEMENT OF DOSE CALCULATION ACCURACY ON kV CBCT IMAGES WITH CORRECTED ELECTRON DENSITY TO CT NUMBER CURVE

  • Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.

Cutoff Probe Analysis and Improvement

  • Kim, Dae-Ung;Yu, Sin-Jae;Yu, Gwang-Ho;Park, Min;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.142-142
    • /
    • 2011
  • Microwave diagnostics method for plasma science and engineering is vigorous research area for its good characteristics such as high sensitivity, reliability, and broad measurement spectrum from low density plasma to high density. We investigate mechanism of microwave probes (hairpin, impedance and absorbtionf probe) and apply it for interpretation of full transmitted spectrum of cutoff probe. Mechanism of the spectrum having same key roles of I-V curve of Langmuir probe is not exactly revealed yet in spite of its importance. This study elucidates physics behind it using a circuit model and E/M wave simulation. Circuit model reveals exact cut-off peak frequency taking account of a collision frequency and a plasma frequency and it enable precise diagnostics of plasma densty from low pressure to high pressre. Cut-off like peaks have been obstacle for choosing cut-off peak is analyzed by E/M simulation and one of cutoff like peaks made by probe holder used for acquire plasma density with cutoff peak applying the hairpin relation. Furthermore, phase difference method for plasma density is conducted. This method uses a single microwave frequency source and it is low-priced.

  • PDF

Temperature Dependence on Electrical Characterization of Epitaxially Grown AIN film on 6H-SiC Structures (6H-SiC 위에 형성한 에피택시 AIN 박막 구조에 대한 전기적 특성의 평가온도 의존성)

  • Kim Yong-Seong;Kim Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Epitaxial aluminum nitride films on 6H-SiC (0001) were fabricated using reactive RF magnetron sputtering and post-deposition rapid thermal annealing. The electrical properties of AIN films depending on film thickness and measurement temperature have been observed. Full width at half maximum of AIN (0002) was $0.1204^{\circ}$ (about 430 arcsec) X-ray rocking curve results. The equivalent oxide thickness (EOT) of AIN film was estimated as about 10 nm and the leakage current density was within the order of $10^{-8} 4/cm^2$. The dielectric constant of AIN film estimated from the accumulation region of C-V curve measured at $300^{\circ}C$ was 8.3. The dynamic dielectric constant was obtained as 5.1 from J vs. 1/T plots at the temperature ranging from R.T. to $300^{\circ}C$ From above, estimation temperature dependance of the electrical properties of Al/AIN/SiC MIS devices was affirmed and useful data compilation for the reliabilities of SiC MIS is expected.

Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods

  • Lee, Ji-Hyun;Lee, Chang-Hoon;Park, Sung-S.;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.277-280
    • /
    • 2011
  • We studied the relative stability and atomic structure of five $C_{20}^{2+}$ isomers obtained by two-electron ionization of a $C_{20}$ cage (the smallest fullerene). All the isomers are bond-stretch isomers, i.e., they differ in bond length. In particular, in one of the isomers with Ih symmetry, all the bond lengths are equal. Full geometry optimizations of the dipositive ion $C_{20}^{2+}$ were performed using the hybrid density functional (B3LYP/6-31G(d)) methods. All isomers were found to be true minima by frequency analysis at the level of B3LYP/6-31G(d) under the reinforced tight convergence criterion and a pruned (99,590) grid. The zero-point correction energy for the cage bond-stretch isomers was in the increasing order $D_{2h}<C_{2h}<C_2<T_h<I_h$ of $C_{20}^{2+}$. The energy difference among the isomers of cage dipositive ions was less than that among neutral cage isomers. Our results suggest that these isomers show bond-stretch isomerism and that they have an identical spin state and an identical potential energy curve. Although the predominant electronic configurations of the isomers are similar, the frontier orbital characteristics are different, implying that we could anticipate an entirely different set of characteristic chemical reactions for each type of HOMO and LUMO.

Optimum Stand Density Control Considering Stability in Larix kaempferi Forests (임분 안정성을 고려한 일본잎갈나무 임분밀도 관리의 적정 수준)

  • Park, Joon Hyung;Chung, Sang Hoon;Kim, Sun Hee;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.202-210
    • /
    • 2020
  • This study investigated the optimal levels of stand density control considering the stability of Larix kaempferi stands. A stand density management diagram was developed from 259 sample plots. Based on these data, we determined an optimal level of the stand density control by identifying the relationship between the relative yield index (Ry) and height-to-diameter ratio. The estimated r-square (R2) of the stand density management diagram is 0.600. The analysis of the relationship between Ry and the slender tree incidence showed that when the stand density exceeded a certain threshold and the ratio of slender trees rapidly increased. The critical value of Ry was 0.63. The results of this study are expected to contribute to the establishment of stand management strategies that can reduce damage from natural causes, such as wind and snow, and to develop stand practice systems for the improved productivity of commercial forests.

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

A Study on the Welds Characteristics of Stainless Steel 316L Pipe using Orbital Welding Process (오비탈 용접법을 적용한 STS 316L 파이프 소재의 용접부 특성에 관한 연구)

  • Lee, B.W.;Joe, S.M.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 2010
  • This paper was studied on microstructure, mechanical properties and corrosion characteristics of 316L stainless steel pipe welds was fabricated by orbital welding process. S-Ar specimen was fabricated by using Ar purge gas and S-$N_2$ specimen was fabricated by using $N_2$ purge gas. Ferrite was not detected in weld metal of S-$N_2$ specimen but the order of 0.13 Ferrite number(FN) was detected in weld metal of S-Ar specimen. Oxygen and Nitrogen concentration of S-$N_2$ specimen was higher than S-Ar specimen on HAZ and inner bead. The welds microstructural characteristics of S-Ar and S-$N_2$ specimens are similar. The microvickers hardness values of S-Ar and S-$N_2$ specimens welds were similar and average values of each regions were in the range of 174~194. The microstructures of S-Ar and S-$N_2$ weld metal were full austenite by primary austenite solidification. The Solidification structures of S-Ar and S-$N_2$ weld metal were formed directional dendrite toward bead center. The potentiodynamic polarization curve of STS 316L pipe welds exhibited typical active, passive, transpassive behaviour. Corrosion current density$(I_{corr.})$ and corrosion rate values of S-Ar specimen in 0.1M HCl solution were $0.95{\mu}A/cm^2$ and $0.31{\mu}A$/year respectively. The values of S-$N_2$ specimen were $1.4{\mu}A/cm^2$ and $0.45{\mu}m$/year.

Electron Beam Welding Diagnosis Using Wavelet Transform (웨이브렛 변환을 이용한 전자빔 용접 진단)

  • 윤충섭
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.33-39
    • /
    • 2003
  • Wavelet transform analysis results show a spectrum energy distribution of CWT along scale factors distinguish the partial, full and over penetration in a electron beam welding by analyzing the curve of spectrum energy at small scale, middle and large scale range, respectively. Two types of signals collected by Ion collector and x-ray sensors and analyzed. The acquired signals from sensors are very complicated since these signals are very closely related the dynamics of keyhole which interact the very high density energy with materials during welding. The results show the wavelet transform is more effective to diagnosis than Fourier Transform, further for the general welding defects which are not a periodic based, but a transient, non-stationary and time-varying phenomena.

Prediction of Mortality and Yield for Chamaecyparis obtusa Using Stand Density Management Diagram (임분밀도관리도를 이용한 편백림의 고사량 및 수확량 예측)

  • Park, Joon Hyung;Yoo, Byung Oh;Lee, Kwang Soo;Park, Yong Bae;Kim, Hyung-Ho;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.174-183
    • /
    • 2018
  • This study aims to make the stand density management diagram which is useful for establishing stand density management system in Chamaecyparis obtusa forest. By using 216 sample plots to estimate Yield-Density relationship ($R^2=0.743$), the stand density management diagram was modeled by the estimated parameters. As a result of this diagram, after planting 3,000 trees per hectare the mortality rate of this unthinned C. obtusa stands over 80 years was estimated to be equal to $12.0{\sim}18.1trees{\cdot}ha^{-1}{\cdot}year^{-1}$, and stand volume was $463.1{\sim}695.4m^3{\cdot}ha^{-1}$, and stand density was $1,555{\sim}2,038trees{\cdot}ha^{-1}$. Developed stand density management diagram for C. obtusa is effective to establish the management criteria and production objective. Therefore, this study allowed us to make the optimal forest working plan.