• Title/Summary/Keyword: full casing method

Search Result 11, Processing Time 0.024 seconds

A Study of Impeller-Casing Interactions in a Centrifugal Pump (원심펌프 임펠러와 케이싱 사이의 상호 작용에 대한 연구)

  • Chung Kyung-Nam;Park Pyun-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.585-588
    • /
    • 2002
  • Pump casing has blockage effects on Impeller flow in a centrifugal pump such that the flow field around volute tongue has quite large change when the impeller rotates. A double suction pump is widely used in industrial world because it has lower NPSH required than a single suction pump. Thus, in this study, the interaction between impeller and volute casing has been investigated by using CFD for a double-suction centrifugal pump. Quasi-steady method and full pump model has been employed for the numerical calculation.

  • PDF

Finite Element Analysis for the Behavior of the Casing of a Pulverizer Mill Planetary Gear Reducer (석탄 분쇄기용 유성감속기 케이싱의 거동에 관한 유한요소해석)

  • Seo, Ji-Hwan;Kim, Seon-Jin;Jung, Min-Hwa;Kim, Byung-Tak
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.34-39
    • /
    • 2014
  • In this study, the structural analysis and the modal analysis are conducted to investigate the stress level, the deformation characteristics and the natural modes of the casing of a planetary gear reducer for a 800kW grade pulverizer mill. The casing is subjected to the load, 2800 kN, from the lump coals in the pulverizing process. Because of the symmetry, the half portion of the reducer casing is modeled for the stress analysis. But the full model is used to find out the eigenvalues and natural modes for the modal analysis. The contact conditions are applied between the thrust pad bearing and the adjacent contacting parts. The results shows that the casing structure has the sufficient strength and stiffness to support the load under consideration. ANSYS version 15 is employed to perform the numerical study.

Critical Speed Analysis of the Turbopump considering the Casing Structural Flexibility (케이징 구조 유연성을 고려한 터보펌프 임계 속도 해석)

  • 전성민;김진한;곽현덕;윤석환
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.92-97
    • /
    • 2006
  • A critical speed analysis is performed for a 30 ton thrust turbopump considering the casing structural flexibility. A full three-dimensional finite element method including rotor and casing is used to predict rotordynamic behavior. Rotor alone model and rotor-casing coupled model with fixed-fixed and free-free boundary conditions are calculated to investigate the effects of the casing structural flexibility. The stiffness of ball bearings are applied as unloaded and loaded values to consider rotor operating conditions in vacuum and real engine respectively. From the results of the numerical analyses, it is found that the effect of the casing structural flexibility reduces the critical speeds of the turbopump. Especially, the loaded rotor condition with higher bearing stiffness is affected dramatically rather than the unloaded rotor condition with lower bearing stiffness.

Noise Diagram of an Automotive Turbo Charger and Its Applications (차량용 터보차져의 소음도표 작성 및 응용)

  • Lee, Hyeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2010
  • A test facility which can simultaneously measure turbocharger operating condition variables and vibro-acoustic emission in the situations that are quite similar to real internal combustion engine operating conditions has been introduced. Using this facility, a new method sweeping from full open throttle to deep surge region along constant speed curves can be utilized instead of the stationary method that has been traditionally used to obtain turbocharger compressor maps. Data covering an extensive range of the compressor performance map have been collected and analyzed. An experimental study is performed to define a noise diagram that correlates vibro-acoustic measurements to aerothermodynamic operating conditions. An instrumentation set in the facility allows the automatic definition of the operating point on the turbine and compressor map of the turbocharger. Also, radiated sound pressure and casing vibration data corresponding to the point are obtained by a microphone in the vicinity of the compressor casing and an accelerometer on the casing. The major source(s) of noise at specific operating point on the map can be easily identified with these maps. Also, acoustic characteristics of a given turbocharger at the vicinity of the surge as well as in the surge are also defined. Finally, the possibility to define mild surge region of a turbocharger using vibro-acoustic measurements is studied.

Abnormal Vibration of Turbine Control Valve due to Resonance (공진에 의한 터빈 Control Valve 이상 진동)

  • Koo, Jae-Raeyang;Kim, Sung-Hwi;Koo, Woo-Sik;Lee, Woo-Kwang;Kim, Yeon-Hwan;Hwang, Jae-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2100-2104
    • /
    • 2004
  • Amount of Electricity which product generator decide control valve at Turbine. Operating method of Control valve have two mode. First operating method is Partial Arc Admission, and second operating method is Full Arc Admission. Failure of Control Valve have on serious damage electricity lineage. In this Paper, We have investigated resonance that Control Valve spring casing.

  • PDF

A Retrospection on Foundation Design of Taipei 101

  • Chin, Chung-Tien;Chao, Hsiao-Chou;Chang, Der-Wen
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.145-156
    • /
    • 2009
  • Large diameter bored pile was selected as the foundation type for Taipei 101. The pile construction method and specific construction procedures were determined based on the results of trial installation and pile load tests. The baseline for foundation design was established using the friction versus depth characteristics of each ground layer obtained from the pile load tests. As the ground profile and depth to the top of rock formation varied significantly on this site, the pile length, bearing capacity and settlement for single pile were analyzed using the information interpreted from adjacent boreholes. The post grouting at pile tip was mandatory for pile construction. Nevertheless, it was treated as a measure reducing the influence of construction uncertainties and providing extra safety for the foundation system.

  • PDF

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.

Thermal Expansion Measurement of Turbine and Main Steam Piping by Using Strain Gages in Power Plants (스트레인게이지를 활용한 발전소 터빈 및 주증기 배관의 열팽창 측정)

  • Na, Sang-Soo;Chung, Jae-Won;Bong, Suk-Kun;Jun, Dong-Ki;Kim, Yun-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.886-891
    • /
    • 2000
  • One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shan alignment problem which sometimes is changed by thermal expansion and external farce, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which. installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants.

  • PDF

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

Investigating Student's Understandings of Light Using Dynamic Science Assessment Method

  • Lee, Soo-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.1
    • /
    • pp.41-56
    • /
    • 2005
  • Assessing students' knowledge can be a challenging endeavor, as researchers attempt to capture the full complexity and potential development of children's ideas. In this study, the Dynamic Science Assessment (DSA) method (Magnusson, Templin, and Boyle, 1997) was employed to investigate 9-12 year old students' understandings of light, while engaging in multiple tasks with a flashlight with various reflectors and mirrors. The results showed that DSA was effective in providing an opportunity to establish a Zone of Proximal Development, in addition to diagnosing a student's prior understanding. Throughout the interview, a student showed a conceptual model of light as being a solid single entity whose shape can be determined by the shape of the casing of a flashlight. However, as DSA provided phenomena that could not be explained by his unitary model, the student began to re-examine his original conceptual model, and attempted to revise it. This study addressed how Dynamic Science Assessment can help us better understand, not only students' current state of understanding, but also a potential development of understanding in their ZPD. In that sense, this study argues that we should pay more attention to the instructive role of classroom assessment that can promote and support further development of students' deeper understandings.