• 제목/요약/키워드: fuel reduction

검색결과 1,781건 처리시간 0.03초

The Effect of Emission Control Using Electrolytic Seawater Scrubber

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.373-377
    • /
    • 2009
  • It is well known that SOx and NOx concentration has a considerable influence on the $N_2O$ emission of the greenhouse gas properties. The quantity of SOx generated during combustion, on fuel specific basis, is directly related to the sulfur content of the fuel oil. However, restricting the fuel oil sulfur content is only a partial response to limiting the overall quantity of SOx emissions, as there remains no over control on the fuel oil consumption other than the commercial pressure which have always directed the attention. This study was carried out as a new basic experiment method of emission control, manly targeted to the vessel. In the experiment, where the scrubbing was achieved through spray tower with high alkaline water made from the electrolysis of seawater, the combined action was to neutralize the exhaust gases (SOx, PM, CO etc.), dilute it, and wash it out. The results showed that SOx reduction of around 95 percent or over could be achieved when using in the high alkaline water, and also leaded to a reduction in the stability of the each pollutant components including the PM (Particulate Matter). The results suggest that the seawater electrolysis method has a very effective reduction of emissions without heavy cost, or catalysts particularly on board.

중형 디젤을 기초한 LPG엔진에서 배기가스온도 저감 연구 (A Study on Reduction of Exhaust Gas Temperature in Retrofitted LPG Fueled Engine Based Medium-Duty Diesel Engine)

  • 최경호;조웅래
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.63-68
    • /
    • 2003
  • The purpose of this study was to investigate reduction of exhaust gas temperature in LPG conversion engine from diesel. A conventional diesel engine was modified to a LPG(Liquified Petroleum Gas) engine that diesel fuel injection pump was replaced by the LPG fuel system. The research was peformed with measurement of exhaust gas temperature by varying spark ignition timing, air-fuel ratio, compression ratio, EGR ratio and different compositions of butane and propane. The major conclusion of this work were followed. (i) Exhaust gas temperature was decreased and power was increased with the advanced spark ignition timing. (ii) Exhaust gas temperature was decreased with lean and rich air-fuel ratio. (iii)Exhaust gas temperature was decreased and power was increased with the higher compression ratio. (iv) Engine power and exhaust temperature were not influenced by varied butane/propane fuel compositions. (v) Finally, one of the important parameters in reduction of exhaust gas temperature is spark ignition timing among the parameters in this study.

DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION

  • Inoue, Tadashi;Koch, Lothar
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.183-190
    • /
    • 2008
  • Pyroprocessing is the optimal means of treating spent metal fuels from metal fast fuel reactors and is proposed as a potential option for GNEP in order to meet the requirements of the next generation fuel cycle. Currently, efforts for research and development are being made not only in the U.S., but also in Asian countries. Electrorefining, cathode processing by distillation, injection casting for fuel fabrication, and waste treatment must be verified by the use of genuine materials, and the engineering scale model of each device must be developed for commercial deployment. Pyroprocessing can be effectively extended to treat oxide fuels by applying an electrochemical reduction, for which various kinds of oxides are examined. A typical morphology change was observed following the electrochemical reduction, while the product composition was estimated through the process flow diagram. The products include much stronger radiation emitter than pure typical LWR Pu or weapon-grade Pu. Nevertheless, institutional measures are unavoidable to ensure proliferation-proof plant operations. The safeguard concept of a pyroprocessing plant was compared with that of a PUREX plant. The pyroprocessing is better adapted for a collocation system positioned with some reactors and a single processing facility rather than for a centralized reprocessing unit with a large scale throughput.

Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) with PBO Reflector

  • Kim, Chihyung;Hartanto, Donny;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.351-359
    • /
    • 2016
  • The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

사용후핵연료의 전기화학적 금속전환을 위한 5kg $U_{3}O_{8}$ Batch 규모의 Mock-up 시험 (5kg $U_{3}O_{8}$ Batch Scale Mock-up Test for the Electrochemical Reduction of Spent Oxide Fuel)

  • 오승철;허진목;홍순석;이원경;서중석;박승원
    • 방사성폐기물학회지
    • /
    • 제1권1호
    • /
    • pp.47-53
    • /
    • 2003
  • 한국원자력연구소에서는 산화물 형태의 사용후핵연료를 용융염 매질에서 금속으로 전환함으로써 사용후핵연료의 발열량, 부피 및 방사능을 1/4로 감소시킬 수 있는 전기화학적 금속전환공정을 개발하고 g 규모(3-40g $U_{3}O_{8}$ batch)로 기초실험을 수행하고 있다. 본 연구에서는 전기화학적 금속전환 장치를 5kg $U_{3}O_{8}$ batch 규모로 설계 제작하고, 목표로 하고 있는 20kg $U_{3}O_{8}$ batch 규모 핫셀 실증을 위한 장치설계자료를 산출하기 위해 mock-up test를 수행하였다. 운전변수에 따른 $U_{3}O_{8}$의 전기화학적 환원거동을 규명하였으며, $U_{3}O_{8}$ 분말을 99% 이상 금속전환하여 전기화학적 금속전환공정의 타당성을 kg 규모로 검증할 수 있었다.

  • PDF

초음파장치를 이용한 경유-물 유화연료 사용 디젤엔진에 관한 연구 -함수율이 기관성능 및 배기배출물 특성에 미치는 영향- (A Study of the DI Diesel Engine Using Light Diesel-Water Emulsified Fuel with Ultrasonic Apparatus - Effect of Water Content on Engine Performance and Exhaust Gas Characteristics -)

  • 김봉석;이영재
    • 에너지공학
    • /
    • 제6권2호
    • /
    • pp.212-219
    • /
    • 1997
  • 본 연구에서는 경유-물 유화연료를 디젤엔진에 적용하였을 때의 엔진의 성능 및 배기배출물 특성에 대해 고찰하였다. 그 결과, 초음파장치(40 KHz, 200W)로 제조한 경유-물 유화연료 운전시, 경유운전시에 비해 연료소비율(함수율 30%시 최대 28% 감소)과 매연(함수율 30%시 최대 60% 감소) 및 CO(할수율 30%시 최대 79% 감소)의 현격한 개선효과를 보았다. 이러한 플러스적인 효과는 유화연료의 미세폭발에 의한 것으로, 초음파에너지로 유화연료를 제조함과 동시에 엔진내로 공급하는 것이 디젤기관의 배기배출물과 연료소비율을 동시에 개선시킬 수 있는 가장 유력한 방법일 것으로 판명되었다. 그러나, 유화연료를 사용한 경우 상대적으로 경유의 유입량 자체가 줄어들게 됨으로써 엔진의 출력 및 토크는 오히려 감소하였다.

  • PDF

LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 - (Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior -)

  • 김민욱;윤영중;한준;이화수;전의찬
    • 한국기후변화학회지
    • /
    • 제7권1호
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

재연소가 열전달 특성과 $NO_x$ 감소에 미치는 영향 (Effects of Reburning on Heat Transfer Characteristics and $NO_x$ Reduction)

  • 이창엽;백승욱
    • 한국연소학회지
    • /
    • 제10권2호
    • /
    • pp.18-25
    • /
    • 2005
  • An experimental study has been conducted to evaluate the effects of reburning on $NO_x$ reduction and also to examine heat transfer characteristics from LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The effects of reburn fuel fraction and injecting location of reburn fuel are studied. The paper reports data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace has been measured using a heat flux meter. Temperature distribution and emission formation in furnace have been also measured and compared.

  • PDF

LBT연소를 통한 Idling 운전시의 연소안정성 평가 (Evaluation of Combustion Stability of Idling Speed State)

  • 이중순;이종승;김진영;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.66-72
    • /
    • 1999
  • It is necessary to discuss lightening engine parts and reducing the friction of sliding parts to improve fuel consumption and combustion stability at idling condition. Lean best torque combustion which produce maximum power at a lean air-fuel ratio is effective for the reduction of exhaust gas emission and the improvement of fuel consumption. Accordingly, this study deals with the expansion of lean combustible limitation, the combustion stability and the reduction of idle speed through the analysis of combustion characteristics on the base of the control technique of precise air-fuel ratio because it does not need to maximum power at idling condition. The idle speed is increased proportional to ISC(Idle Speed Control) duty ratio. On the other hand the idle speed decreased by lean air-fuel ratio. The COV in engine speed is stable within maximum two percent up to 17.6 mixture ratio by the control of ISC duty ratio.

  • PDF