• Title/Summary/Keyword: fuel reduction

Search Result 1,778, Processing Time 0.029 seconds

Approach to Reduce CO2 by Renewable Fuel Cofiring for a Pulverized Coal Fired Boiler (신재생연료 혼소를 통한 미분탄 화력 발전소의 CO2 저감 방안 도출)

  • Kim, Taehyun;Choi, Sangmin;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.19-20
    • /
    • 2013
  • The cofiring of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would lead to reduce plant efficiency and flexibility in operation, and increase operation cost and capital cost associated with renewable fuels handling and firing equipment. The aim of this study is to investigate reduction of carbon dioxide at varying percentage of biomass in fuel blend to the boiler biomass, and estimate operation and capital cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as a renewable fuels for a cofiring with coal. Several approaches by the cofiring ratio are chosen from past plant demonstrations and commercial cofiring operation, and they are evaluated and discussed for CO2 reduction and cost estimation.

  • PDF

Fuel Conversion to Renewable Energy Analysis of the Impact on the Horticulture in the Agricultural Sector -Mainly Wood Pellets- (농업부문에서 신재생에너지로의 연료전환이 시설원예에 미치는 영향 분석 -목재펠릿을 중심으로-)

  • Yoon, Sung-Yee;Kim, Tae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.531-547
    • /
    • 2014
  • This study analyzed the effect of Greenhouse of wood pellet fuel conversing from Diesel. Analyzed through a life cycle assessment of greenhouse gas emissions of carbon dioxide for the environmental assessment, In evaluation of the Ministry of the Environment, analyzed through the life cycle assessment of carbon dioxide emissions of the greenhouse gas and, In the case of economic evaluation, we analyzed the investment payback period to the total revenue generated by each of the calculated incentive based on the RHI and institutions reduction projects a reduction of costs associated with the reduction of fuel costs.

A Study on the Vibration Reduction of an Automobile Fuel Pump (자동차용 연료펌프의 진동 저감에 대한 연구)

  • Kim, Byeong Jin;Won, Hong In;Lee, Seong Won;Park, Sang Jun;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.520-526
    • /
    • 2013
  • This article presents the reduction of vibration generated by an automobile fuel pump. In order to analyze the vibration of the fuel pump, a simplified dynamic model is established, which is composed of a rigid rotor and a equivalent springs. The equivalent stiffnesses of the upper and lower assemblies are evaluated by the comparison of modal testing results and the finite element analysis. The stiffness for the oil film of the journal bearing is extracted by using Reynold's equation. In addition, the time responses for the vibration of the fuel pump are computed by using a commercial multi-body dynamics software, RecurDyn. Based on these results, some design suggestions are proposed to reduce the vibration of an automobile fuel pump.

A Study on the Noise Reduction of a Portable Fuel Cell System (휴대용 연료전지 시스템의 소음 저감에 대한 연구)

  • Jeon, In-Youl;Bae, Joon-Soo;Oh, Min-Jung;Choi, Sang-Hyeon;Lee, Choong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.858-861
    • /
    • 2006
  • In this paper, a study on the noise reduction in a mobile fuel cell system is presented. Among various fuel cell systems around 20W capacities designed for mobile electronic devices, the active direct methanol fuel cell (DMFC) systems have been recently developed. In such systems, the primary noise source is the air pump which provides sufficient air flow ($5{\sim}6$ liter/min) for electrochemical reaction with methanol fuel while the noise contributions from other auxiliary parts are relatively small. Especially, the discrete noise tones generated by the air pump are dominant and those frequency peaks related to the rotor harmonics are needed to be suppressed by a silencer. Therefore. the Herschel/Quinke (HQ) tubes, which use the out-of-phase cancellation of acoustic waves propagating through direct and indirect pathways, are applied to the inlet of the air pump. Performance of noise reduction with HQ silencer is analytically estimated by calculating the transmission. The length and number of thin HQ tubes are optimized to decrease the radiated noise. As a result, the sound pressure level could be successfully reduced by about 10 dB after applying three serially connected HQ tubes.

  • PDF

A Study of Optimized Operation for CO2 Emission and Aircraft Fuel Reduced Operation Procedures (온실가스배출 감소와 연료절감을 위한 최적 운용절차 방안에 관한 연구)

  • Hwang, Jeong-Hyun;Lee, Tae-Gwang;Hwang, Sa-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.62-70
    • /
    • 2013
  • As the aviation industry looks to the future, fuel saving and $CO_2$ emission reduction play a dominant role in meeting the business challenges presented by global financial uncertainty. The IATA and International Government effort to save fuels, and then save 4 billion gallons of fuel burned, while reducing $CO_2$ emissions by 34 million tons. The various reduction methods adapted airlines and airports. We focused on optimized flight operation procedures for saving fuel and reduction emission cases. IATA and Canada government research reports focused on four methods that Engine Core Washing, Portable Water Management, Single Engine Taxi, APU limit operation. Apply to domestic airlines fuel data, Engine Core washing was saving more than Twenty-four thousand tons $CO_2$ emissions.

Part-load Performance Characteristics of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System Operating with Various Load-following Operation Modes (부하추종 운전방법에 따른 고체산화물 연료전지/가스터빈 하이브리드 동력 시스템의 부분부하 성능특성)

  • Kim Jae-Hoon;Yang Jin-Sik;Ro Sung-Tack;Sohn Jeong-Lak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.193-200
    • /
    • 2006
  • The purpose of this study is to compare the part-load performance of a SOFC/GT hybrid power system with three different kinds of load-following operation modes. The primary mode for the part load operation of a hybrid power system is the reduction of supplied fuel (e.g., fuel control mode) to the hybrid system. The other two options, i.e., variable speed and VIGV controls, are related to the reduction of supplied air simultaneously with the reduction of supplied fuel to the system. With the performance analysis of a SOFC/GT hybrid power system, it is concluded that the variable speed con佐ol mode Provides the best performance for the part-load operations. It is also found that the VIGV control mode, with its better performance behavior than the fuel control mode, can be used as an important option for the part-load operation especially in case that the variable speed control mode can not be adopted.

Analyses of GHG Reduction Effectiveness and Economic Feasibility in the Wood Pellet Fuel Switching Project (목재 펠릿 연료전환 사업의 온실가스 감축 효과 및 경제성 분석)

  • Lee, Jin-Chul;Kang, Kyu-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.594-605
    • /
    • 2013
  • This study was performed to analyze GHG (Greenhouse gas) reduction effectiveness and economic feasibility in the wood pellet fuel switching project using JCDM (Japan Clean Development Mechanism) and KVER (Korea Voluntary Emission Reduction)data. The major data for the analyses consist of investment costs, annual GHG reductions, fuel prices and GHG credit prices. The wood pellet fuel switching projects are the $CO_2$-zero projects. Therefore, these projects are essential to accomplish the GHG mitigation target, especially in Korea. In order to raise the economic feasibility of the wood pellet fuel switching project, the results of this study suggest that the Korean government should reduce the price of wood pellet through the supply on a large scale and raise the KCER price of wood pellet fuel switching project.

An Experimental Study on the Simultaneous Reduction of Smoke and NOx by Oxygenated Fuel Additives in DI Diesel Engine (직접분사식 디젤기관에서 함산소연료 첨가에 의한 매연과 NOx 동시 저감에 관한 실험적 연구)

  • ;近久 武美
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 1996
  • Extensive experiments were conducted to investigate the emission of DI diesel engine by using DMC(dimethyl carbonate) as an oxygenated fuel additives. The results indicate that smoke reduces almost linearly with fuel oxygen contents. Reductions of HC and CO were attained noticeably, while a small increase in NOx was encountered concurrently. The effective reduction in smoke with DMC was maintained with the presence of CO2, which suggested a low NOx and smoke operation could be obtained in combination of using oxygenated fuel and EGR. Further experiment was conducted a thermal cracking set-up for mechanism studies.

  • PDF

Emission Characteristics of a Gasoline Engine Using Ethanol Blended Fuel (가솔린 기관의 에탄올혼합연료의 배출가스 특성에 관한 연구)

  • 조행묵;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.516-521
    • /
    • 2004
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiencies characteristics were investigated in gasoline engine with an electronic fuel injection. The results showed that the increase of ethanol concentration in the blended fuels brought the reduction of THC and $CO_2$ emissions from the gasoline engine. THC emissions were drastically reduced up to thirty percent. And brake specific fuel consumption was increased. but brake specific energy consumption was similar level. However. unburned ethanol and acetaldehyde emissions increased. The conversion efficiency of Pt/Rh based three-way catalysts and the effect of ethanol on CO and NOx emissions were investigated by the change of engine speed. load and air/fuel ratio. Furthermore, the ethanol blended fuel results in the reduction effect of THC. CO and NOx emissions at idle speed.

The effect of water addition on combustion efficiency in premixed flame (물添加가 豫混合火焰의 燃燒效率에 미치는 影響)

  • 김성환;오신규;채재우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.819-827
    • /
    • 1987
  • The purpose of the present investigation is to examine the effect of water addition on combustion efficieny. In this research, fuel and additive water are injected into a burner in the form of vapors through separate needle valves, the flame temperature and concentrations of soot, CO and unburned hydrocarbons were measured in a premixed flame. The results are obtained to be: In the fuel lean region, the reduction rate of CO, soot and HC by water injection increases slightly, but there is no change in the combustion efficiency. On the other hand, in the fuel rich region, the reduction rate of CO, Soot and HC by water injection increases more than that of the fuel lean region. Accordingly, combustion efficiency increases.