• 제목/요약/키워드: fuel reduction

검색결과 1,778건 처리시간 0.026초

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구 (A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine)

  • 강병무;안현찬;이태원;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

바이오가스 연료기반 연료전지발전 기술동향 (Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel)

  • 이종규;전재호;이종연
    • 신재생에너지
    • /
    • 제4권3호
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

디젤기관에서 함산소연료(DMC)와 Cooled EGR방법에 의한 매연과 NOx의 동시저감 (Simultaneous Reduction of Smoke and NOx with Oxygenated Fuel(DMC) and Cooled EGR method in Diesel Engine)

  • 오영택;최승훈
    • 동력기계공학회지
    • /
    • 제6권1호
    • /
    • pp.27-35
    • /
    • 2002
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for direct injection diesel engine. It is tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission and brake specific fuel consumption rate have been investigated. Dimethyl carbonate(DMC) contains oxygen component 53.3% in itself, and it is a kind of effective oxygenated fuel of carbonate group that the smoke emission of DMC is reduced remarkably in comparison with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and EGR method.

  • PDF

저탄소 운항절차에 따른 연료절감 효과분석 (An analysis of the fuel saving effect during low carbon flight procedures)

  • 김용석;이주형
    • 한국항공운항학회지
    • /
    • 제21권1호
    • /
    • pp.39-44
    • /
    • 2013
  • The amount of greenhouse gas (GHG) emissions has been increasing steadily over the last 4 years, averaging 6.8 percent a year, due to the growth of low cost carriers and the increased demand for air transportations. For the aviation GHG reduction, various fuel saving activities are implemented in many areas such as high-efficiency aircraft and bio-fuel development in the technical part and low carbon flight procedures, short cut route development in the operational approach. Among the various reduction technologies, we focused on low carbon flight procedures that are crucial to GHG reduciton and suggested a reduction effect according to target implementation rate using by fuel saving estimation data in each aircraft type.

동력 조향계 최적화에 의한 연비 개선 (Fuel Consuming Reduction by Power Steering System Optimization)

  • 조석현;남경우;권오성
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.119-124
    • /
    • 2006
  • This paper deals with energy-saving effort in the hydraulic power steering system. Commonly, the hydraulic power steering systems are used for passenger cars and the reduction of pumping loss under non-steering condition is important to improve fuel economy. Experiments and simulations are performed simultaneously to examine the main factors to reduce the pumping loss-pressure loss and flow rate of the power steering systems. Fuel economy effect of the optimal design of power steering system is verified by vehicle test - more than 1% fuel consuming reduction is attained.

The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor

  • Seddon Atkinson;Takeshi Aoki
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.785-792
    • /
    • 2024
  • This article provides an overview of the design methodology used to develop a conceptual set of reactivity control mechanism of a micro reactor based on the U-Battery. The U-Battery is based on remote deployment and therefore it is favourable to provide a long fuel lifecycle. This is achieved by implementing a high fissile loading content, which proves challenging when considering reactivity control methods. This article follows the design methodology used to overcome these issues, with an emphasis on a new concept of a moveable moderator which utilises the size of the U-Battery as a small reduction in moderation provides a significant reduction in reactivity. The latest work on this project sees the moveable moderator investigated during a depressurised loss of forced coolant accident, where a reduction of moderator volume increases the maximum fuel temperature experienced. The overall conclusion is that the maximum fuel temperature is not significantly increased (4 K) due to the central reflector region relatively lower volumetric heat capacity compared to that of whole core. However, a small temperature increase is observed immediately after the transient due to the central reflector removal because it reaches energy equilibrium with the fuel region faster.

Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성 (Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives)

  • 최병철;이춘희;정종우
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

연료전지 블로워의 유로 크기에 따른 소비전력과 소음저감 방법 (Reduction of Noise and Input Power in Fuel Cell Blower by Controlling Flow Path)

  • 탁봉열;김찬규;이소아;장춘만
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.90.2-90.2
    • /
    • 2011
  • This paper describes performance enhancement of a fuel cell's blower by controlling flow path. Different duct diameter at the inlet and outlet of the blower is selected for reducing blower noise level and input power. Hole diameter and the number of hole at the check valve are tested to reduce the input power of the blower. Two types of blower, fuel pressurized blower and cathode blower, are considered in the present study. Throughout experimental measurements of the test blowers, it is found that duct diameter is effective to reduce noise level and input power in the fuel cell blower. Noise reduction due to the optimal duct diameter at the outlet is more effective when flow rate is relatively large. That is, cathode blower has larger noise reduction compared to fuel pressurized blower because of larger flower rate. Input power of the blower can be reduced by controlling the hole diameter and the number of hole at the check valve.

  • PDF

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.