• Title/Summary/Keyword: fuel failure

Search Result 295, Processing Time 0.021 seconds

Structural Safety Assessment of a Sunken Ship Considering Hull Corrosion and Damaged Members - Focus on the Sunken Ship 'No. 7 HaeSung' - (선체 부식 및 손상 부재를 고려한 침몰선박의 구조 안전성 평가에 관한 연구 - 제7 해성호를 중심으로 -)

  • Lee, Seung Hyun;Kim, Won Don;Suh, Jae-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.332-340
    • /
    • 2016
  • Sunken ships cause damage to the environment due to the dispersal of fuel oil and harmful cargo goods in the hull. Since the sunken ship is mostly flooded by the seabed, it tends to be in a relatively stable condition. However, the heavy body, together with the load of remaining goods in the cargo hold, the constant contact with the seabed, and ocean currents and tidal waves, can affect dispersal of residual fuel oils out of the sunken ship. Corrosion of the sunken ship starts upon sinking, decreasing the thickness of the hull structure and sub-materials. Therefore, it is necessary to assess the structural stability against the potential breakdown of the sunken ship. Whilst evaluating the danger of the sunken ship, this result should be reflected in 'the possible discharge'. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship. The structural stability assessment to estimate the collapsibility of the hull was structure targeted at the sunken ship 'No. 7 HaeSung', which was classified as the prime example for the intensive management of sunken ships. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship and to propose a method to conduct a structural safety assessment that estimates the collapsibility of the hull by targeting the sunken ship 'No. 7 HaeSung',which was classified as the prime example for the intensive management of sunken ships. The collapsibility of the hull structure was estimated Based on the damage size of the hull structure, and the corrosion rate of the hull structure and sub-materials due to the seawater after sinking. It was confirmed that there was a low possibility of the total destruction of the hull structure at the current time. However, there is a high possibility in the potential failure of the hull structure due to increased rate of corrosion thereafter. Therefore, we believe continuous study on influence of corrosion and marine environment change to sunken ship's structural safety is necessary.

Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator (TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가)

  • Lee, Changsoo;Cho, Won-Jin;Lee, Jaewon;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.183-202
    • /
    • 2019
  • For design and performance assessment of a high-level radioactive waste (HLW) disposal system, it is necessary to understand the characteristics of coupled thermo-hydro-mechanical (THM) behavior. However, in previous studies for the Korean Reference HLW Disposal System (KRS), thermal analysis was performed to determine the spacing of disposal tunnels and interval of disposition holes without consideration of the coupled THM behavior. Therefore, in this study, TOUGH2-MP/FLAC3D is used to conduct THM modeling for performance assessment of the Korean Reference HLW Disposal System (KRS). The peak temperature remains below the temperature limit of $100^{\circ}C$ for the whole period. A rapid rise of temperature caused by decay heat occurs in the early years, and then temperature begins to decrease as decay heat from the waste decreases. The peak temperature at the bentonite buffer is around $96.2^{\circ}C$ after about 3 years, and peak temperature at the rockmass is $68.2^{\circ}C$ after about 17 years. Saturation of the bentonite block near the canister decreases in the early stage, because water evaporation occurs owing to temperature increase. Then, saturation of the bentonite buffer and backfill increases because of water intake from the rockmass, and bentonite buffer and backfill are fully saturated after about 266 years. The stress is calculated to investigate the effect of thermal stress and swelling pressure on the mechanical behavior of the rockmass. The calculated stress is compared to a spalling criterion and the Mohr-Coulumb criterion for investigation of potential failure. The stress at the rockmass remains below the spalling strength and Mohr-Coulumb criterion for the whole period. The methodology of using the TOUGH2-MP/FLAC3D simulator can be applied to predict the long-term behavior of the KRS under various conditions; these methods will be useful for the design and performance assessment of alternative concepts such as multi-layer and multi-canister concepts for geological spent fuel repositories.

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Structural Safety Test and Analysis of Type IP-2 Transport Packages with Bolted Lid Type and Thick Steel Plate for Radioactive Waste Drums in a NPP (원자력발전소의 방사성폐기물 드럼 운반을 위한 볼트체결방식의 두꺼운 철판을 이용한 IP-2형 운반용기의 구조 안전성 해석 및 시험)

  • Lee, Sang-Jin;Kim, Dong-hak;Lee, Kyung-Ho;Kim, Jeong-Mook;Seo, Ki-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.199-212
    • /
    • 2007
  • If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or dispersal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions. For the tests we examined the failure of bolts and the deformation of flange to evaluate a loss or dispersal of radioactive material and measured the shielding thickness using a ultrasonic thickness gauge to assess a loss of shielding integrity. The strains and accelerations acquired from tests were compared with those by analyses to verify the impact dynamic analysis. The analytic results were larger than the those of test so that the analysis showed the conservative results. Finally, we evaluated the safety of the type IP-2 transport package under the stacking test condition using a finite element analysis. Under the stacking test condition, the maximum Tresca stress of the shielding material was 1/3 of the yielding stress. Two kinds of a type IP-2 transport package were safe for the free drop test condition and the stacking test condition.

  • PDF

The Economic Effects of the New and Renewable Energies Sector (신재생에너지 부문의 경제적 파급효과 분석)

  • Lim, Seul-Ye;Park, So-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2014
  • The Korean government made the 2nd Energy Basic Plan to achieve 11% of new and renewable energies distribution rate until 2035 as a response to cope with international discussion about greenhouse gas emission reduction. Renewable energies include solar thermal, photovoltaic, bioenergy, wind power, small hydropower, geothermal energy, ocean energy, and waste energy. New energies contain fuel cells, coal gasification and liquefaction, and hydrogen. As public and private investment to enhance the distribution of new and renewable energies, it is necessary to clarify the economic effects of the new and renewable energies sector. To the end, this study attempts to apply an input-output analysis and analyze the economic effects of new and renewable energies sector using 2012 input-output table. Three topics are dealt with. First, production-inducing effect, value-added creation effect, and employment-inducing effect are quantified based on demand-driven model. Second, supply shortage effects are analyzed employing supply-driven model. Lastly, price pervasive effects are investigated applying Leontief price model. The results of this analysis are as follows. First, one won of production or investment in new and renewable energies sector induces 2.1776 won of production and 0.7080 won of value-added. Moreover, the employment-inducing effect of one billion won of production or investment in new and renewable energies sector is estimated to be 9.0337 persons. Second, production shortage cost from one won of supply failure in new and renewable energies sector is calculated to be 1.6314 won, which is not small. Third, the impact of the 10% increase in new and renewable energies rate on the general price level is computed to be 0.0123%, which is small. This information can be utilized in forecasting the economic effects of new and renewable energies sector.