• 제목/요약/키워드: fuel distribution

검색결과 1,400건 처리시간 0.024초

연료전지 하이브리드 차량의 연비향상을 위한 배터리 동력분배 최적화 (Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle)

  • 이동섭
    • 대한기계학회논문집A
    • /
    • 제37권3호
    • /
    • pp.397-403
    • /
    • 2013
  • 친환경 및 연비에 대한 요구와 제한은 하이브리드 차량과 같은 친환경 고연비 차량기술을 발전시켜왔다. 하이브리드 차량의 연비는 시스템의 특성으로 인해 주행 후 배터리 충전량의 변화를 연비에 반영시키는 등가연료사용량이 연료소비량에 추가되므로 제어전략에서 배터리 사용영역 증가만으로 연비를 향상시킬 수 없었다. 본 논문은 연료전지 하이브리드 차량을 matlab simulink상에서 모델링하고 기존제어전략에서 연료전지의 사용구간을 분석하여 연료전지 주 사용영역에서의 배터리와 연료전지 간 동력분배를 연비향상을 목표로 최적화하여 등가연료사용량을 포함한 총연비의 향상을 시도하였다.

연료단지 진폐증 환자 분포현황 및 노출특성 (Distribution and Exposure Characteristics of Pneumoconiosis Patients in Fuel Complexes)

  • 정종현
    • 한국환경과학회지
    • /
    • 제33권2호
    • /
    • pp.161-168
    • /
    • 2024
  • This study was conducted to identify the pollutants generated by the fuel complex and to determine the health effects of the surrounding residents. In addition, based on the results of epidemiological surveys and health impact surveys of local residents, we analyze the distribution of patient groups and exposure characteristics according to the distance from the fuel complex boundary. Samples were collected from the briquette plant within the fuel complex and analyzed by SEM-EDXA, X-ray Fluorescence Spectrometer, and ICP. In addition, the distribution of patients and exposure characteristics were analyzed according to the distance from the fuel complex and yard boundaries. Analysis of briquette samples from the fuel complex showed that the average particle size was 10-30 ㎛, the shape was irregular, and SiO2 accounted for more than 50%. It is believed that silica, which causes pneumoconiosis, may have been scattered into the air. In particular, there was a large distribution of 5 ㎛ particles that affect respiratory diseases. According to the analysis of the residential addresses and distribution of pneumoconiosis cases, many pneumoconiosis cases were located in the area between 200 and 500 meters from the boundary of the fuel complex. In addition, 28 pneumoconiosis cases were identified as a result of the epidemiological survey and health impact survey at the fuel complex. In detail, there were 8 cases of occupational pneumoconiosis, 6 cases of environmental pneumoconiosis, and 14 cases of occupational and environmental pneumoconiosis. The confirmed pneumoconiosis cases were located between 0.3 and 1.1 kilometers from the fuel complex. It was found that environmental pollutants generated by the fuel complex adversely affect the health of local residents. In particular, there are many cases of pneumoconiosis in the area between 200 and 500 meters from the boundary of the fuel complex, and this distance is considered to be the direct and indirect impact zone of the briquette plant.

연료전지 채널 내 균일한 유량분배를 위한 연료전지 스택의 매니폴드 디자인 최적화 연구 (Optimizing the Manifold Design of a Fuel Cell Stack for Uniform Distribution of Reactant Gases within Fuel Cell Channels)

  • 조아래;강경문;오성진;주현철
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.11-19
    • /
    • 2012
  • The main function of fuel cell manifold is to render reactants distribution as uniform as possible into a fuel cell stack. The purpose of this study is to numerically investigate the effects of stack manifold design on reactants distribution within a fuel cell stack. Four manifold designs with different manifold entrance shapes (expansion or diffuser) and different values of the extra width between the cell outer channel and manifold side wall are considered and applied to the fuel cell stack consisting of 50 cells. Since the fuel cell stack geometry involves several millions of grid points for numerical calculations, a parallel computing methodology is employed to substantially reduce the computational time and overcome the memory requirement. The numerical simulations are carried out and calculated results clearly demonstrate that both the manifold entrance shape and extra width have a substantial influence on manifold performance, controlling the degree of flow separation and entrance length for fully developed flow in the manifold channel. Finally, we suggest the optimum design of fuel cell manifold based on the simulation results.

희박연소 엔진의 연소실내 연료분포 특성 연구 (In-Cylinder Fuel Distribution Measurements in a Lean Burn Engine)

  • 김기성;이경환
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.19-32
    • /
    • 1999
  • The present study investigated the forms and behaviors of fuel during intake and compression process, and the initial flame stability in a lean burn engine modified as a single cylinder engine equipped with quartz windows for visualization. PLIF(Planar Laser Induced Fluorescence) method with KrF Excimer laser was used for measuring the fuel distributions. The principal design concept of the lean burn nin in this study is the axial stratification in the fuel distribution via fuel injection during intake process and different shapes of intake ports; helical and straight. The experiments showed that fuel flowed in as a vapor state in the early part of intake process and lots of this mixture mated down along the intake valve side cylinder wall, but in the latter part, a lot of fuel flowed in as a liquid state and this fuel stayed in the upper part of cylinder, after that the dense fuel cloud moved upward in the early of part compression process. It became clear that the fuel flowed in via straight port had a important role in the axial fuel stratification.

  • PDF

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

DME-LPG 혼합연료를 사용한 LPG 차량의 실증평가 (Feasibility Test of LPG Vehicles by Using DME-LPG Blends)

  • 연주민;이민호;박천규;황인하;하종한;강용
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.33-41
    • /
    • 2015
  • DME는 높은 세탄가와 낮은 배출가스로 인하여 청정 디젤엔진 대체연료로 사용될 수 있고, LPG와 물리적 특성이 유사하기 때문에 혼합사용이 가능하다. 본 연구에서는 DME-LPG 혼합연료를 LPG 차량 연료에 적용한 실증평가를 수행하였다. 평가 차량으로는 LPG 연료 공급방식별로 액상연료공급방식(LPLi), 기상연료공급방식(LPGi), 분배식펌프 방식(Mixer type)의 LPG 자동차를 선택하였다. 배출가스(CO, THC, $NO_X$)와 연료소비효율에 대한 영향을 비교하기 위하여 LPG와 DME-LPG 혼합연료에 대한 성능평가를 수행하였다. 차량의 주행거리가 증가함에 따라 DME-LPG 혼합연료를 사용한 차량의 배출가스와 연료소비효율은 LPG 연료를 사용한 경우와 비교해서 동등한 수준으로 평가되었다.

6공 연료분사기를 장착한 DISI 엔진 내 균질급기의 연료증기 분포 특성 (The Study on the Fuel Vapor Distribution of Homogeneous Charge in a DISI Engine with a 6-Hole Fuel Injector)

  • 김성수
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.5-10
    • /
    • 2011
  • The spatial fuel vapor distribution of the homogeneous charge by a 6-hole injector was examined in a optically accessed single cylinder direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF (Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played a little more effective role in the spatial fuel vapor distribution than the swirl flow during the compression stroke at 10 mm and 2 mm planes under cylinder head gasket and the increased fuel injection pressure activated spatial distributions of the fuel vapor. In additions, richer mixtures were concentrated around the cylinder wall by the increase of the coolant temperature.

간헐적인 연료분무의 유동특성에 관한 연구 (A Study on the Flow Characteristics of an Intermittent Fuel Spray)

  • 김원태;강신재
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1198-1206
    • /
    • 1997
  • The flow characteristics of an intermittent fuel injection into a stationary ambient air were investigated using gasoline. The measurements were made by two-channel, air cooling type Phase Doppler Anemometer(PDA) system (DANTEC, 750 MW). And a pintle type injector of MPI (Multi-point Port Injection) system was utilized as a fuel injector. The PDA receiver optic was set up in a 60.deg. C forward scatter arrangement to obtain the optimum scattering signal of fuel droplets. The data were obtained by synchronizing PDA system with the fuel injection period, and the axial and radial velocity and turbulent components of fuel droplets were mainly measured for the analysis of temporal and spatial distribution depending upon the fuel injection pressures.

주행거리 증가에 따른 자동차 연비 특성 연구 (A Study on the Characteristics of Vehicle Fuel Economy by Increasing Mileage)

  • 임재혁;김기호;이민호;박진성;이정민
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.299-305
    • /
    • 2018
  • The domestic label fuel economy measurement method is the same as the North American measurement method. The results of two test modes (city [FTP-75 mode], highway [HWFET mode]) are calculated to be equivalent to the final fuel economy value calculated as the result of five test modes reflecting various environmental conditions and driving patterns 5-cycle correction formula is used. In this study, we tried to find out that the difference between the domestic label fuel economy of the vehicle and the real road fuel economy felt by the driver compared to the new vehicle condition as the mileage increases. Using domestic label fuel economy measurement method, Four gasoline vehicles and four diesel vehicles were tested for the fuel economy of a new vehicle with a mileage of 150 km or less and domestic fuel economy test $6,500{\pm}1,000km$ durability condition and 15,000 km durability. It is confirmed that the certain portion (6,500 km endurance vehicle) The increase in mileage did not affect the fuel economy or the emission gas significantly, indicating that vehicle durability was limited.

DISTRIBUTION OF FUEL MASS AFTER WALL IMPINGEMENT OF DIESEL SPRAY

  • Ko, K.N.;Huh, J.C.;Arai, M.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.493-500
    • /
    • 2006
  • Investigation on the fuel adhering on a wall was carried out experimentally to clarify the characteristics of impinging diesel sprays. Diesel sprays were injected into a high-pressure chamber of cold state and impinged to a wall having various impingement distances and ambient pressures. Photographs of both the fuel film and the post-impingement spray were taken through a transparent wall. Adhered fuel mass on a wall was measured by means of dividing into two types of fuel state: the fuel film itself; and sparsely adhered fuel droplets. Adhering fuel ratio was predicted and further the distribution of fuel mass for impinging diesel spray was analyzed as a function of time. As result, with an increase of the ambient pressure, both the maximum fuel film diameter and the adhered fuel ratio decreased. Based on some assumptions, the adhering fuel mass increased rapidly until the fuel film diameter approached the maximum value, and then increased comparatively gradually.