• Title/Summary/Keyword: fuel costs

Search Result 333, Processing Time 0.027 seconds

Optimal Operation Scheme and Reliability Index Improvement of Micro Grid Using Energy Storage Systems (에너지 저장장치를 이용한 마이크로 그리드의 최적운영 및 신뢰도 지수 개선)

  • Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The micro grid considered in this paper consists of a diesel generator, a photovoltaic array, a wind turbine, a fuel cell, and a energy storage system. This paper explains and simulates the micro grid components in terms of accuracy and efficiency of having a system model based on the costs of fuel as well as operation and maintenance. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the customer demand and safety of micro grid. The operating cost in fuel-cell system includes the fuel costs and the efficiency for fuel to generate electric power. To develop the overall system model gives a possibility to minimize of the total cost of micro grid. The application of optimal operation can save the interruption costs as well as the operating costs, and improve reliability index in micro grid.

A Study on Impact and Countermeasures of Marine Fuels in the FuelEU Maritime Regulation (FuelEU Maritime 규제 적용에 따른 해양 연료의 영향분석 및 대응방안 연구)

  • Jin-Hyung Kim;Jae-Hyuk Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.88-97
    • /
    • 2024
  • This study performed the analysis on an economic feasibility of each marine fuel, potential fuel pathways and the relevance of compliance measures to ensure compliance with the FuelEU Maritime regulation. Additionally, it identified certain regulatory gaps to encourage the use of alternative marine fuels. Regarding GHG emissions calculations, the existing GHG regulations for ships applies the Tank-to-Wake (TtW) method, whereas FuelEU Maritime applies the Well-to-Wake (WtW) method. The main results present that important information to establish response strategy for FuelEU Maritime including the costs and benefits of each marine fuel, the minimum blending ratio of alternative fules, and compliance impacts of measures. For the regulatory costs and benefits of marine fuels following the implementation of the FuelEU Maritime from 2025, our findings indicate that while most fossil fuels incur regulatory costs from 2025, most of biofuels and RFNBO fuels do not incur costs until 2050. This will play a role to narrow the price gap between fossil fuels and alternative fuels.

A Study on Fuel Saving Measure by Fuel Efficiency Analysis Associated with Weight. (중량에 따른 연료효율 분석을 통한 연료 절감 방안 연구)

  • Lee, Jun-Oh;Jeon, Je-hyung;Park, Jeongmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.142-148
    • /
    • 2018
  • In recent years, Korea's aviation industry has been developing rapidly due to the emergence of low-cost airlines. In order to survive in such competition, airlines are making various efforts to save the operation cost as much as possible. Fuel costs account for more than 25% of operating costs. For airlines, reducing aircraft fuel costs is an important part of improving profitability. In this study, analyzing the difference weight between flightplan and W&B Manifest for calculated the fuel that was unnecessarily loaded. As a method to calculate the unnecessary fuel was used by Airbus company flight planning program.

A Route Choice Model with Considering Fuel Cost by Travel Distance (통행거리에 따른 유류비를 반영한 경로선택모형 개발)

  • Park, Bora;Lee, Jaeyoung;Choi, Keechoo;Song, Pilyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.599-604
    • /
    • 2010
  • In this study, the value of travel time was estimated with reflecting the fuel cost according to travel distance. The main objective of this study is whether the addition of the fuel cost as a factor for route choice behavior is appropriate or not, through the stated preference survey. The route choice model was developed using SP survey technique with the consideration of level difference and the value of travel time, toll and fuel costs. Consequently, the fuel cost is identified as a main factor like travel time and toll cost in choosing routes from drivers' viewpoints. Nevertheless, since toll costs are recognized as out-of-pocket expenses whereas fuel costs as periodical expenses, it seems drivers are more sensitive to toll than fuel costs.

A Study on the Change in Production Costs and Electricity Tariffs with the Introduction of Renewable Portfolio Standard (RPS(Renewable Portfolio Standard) 제도 도입을 고려한 전기요금변화에 관한 연구)

  • Hong, Hee-Jung;Han, Soek-Man;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.708-717
    • /
    • 2009
  • Recently, Korea government decided to introduce RPS (Renewable Portfolio Standard) mechanism which requires electricity providers to gradually increase the amount of renewable energy sources such as wind, solar, bioenergy, and geothermal. As a consequence, it is expected that the long-term fuel mix would be changed to result in more expensive production and the increased production costs would be distributed to the rate payers via electricity tariffs. This paper presents the change in long-term fuel mix in year 2020 with the four RPS scenarios of 3%, 5%, 10% and 20%, and the methodologies for collecting the increased production costs through new tariff schedule. The studies on long-term fuel mix have been carried out with the GATE-PRO (Generation And Transmission Expansion Program) optimization package, a mixed-integer program developed by the Korea Energy Economics Institute and Hongik university. Three methodologies for distributing the production costs to the rate payers have also been demonstrated.

Can Non-Fuel Costs be Considered as Variable Costs in Generation Market? (연료비 이외의 항목도 발전시장의 변동비로 간주할 수 있는가?)

  • Cho, Sung Bong
    • Environmental and Resource Economics Review
    • /
    • v.20 no.3
    • /
    • pp.567-593
    • /
    • 2011
  • In 2005, five Korean generation companies suggested to include non-fuel ancillary costs incurring in the process of managing fuels and ashes as variable costs in Korean Cost-Based Pool. OLS analysis seeking statistical relation with the amount of generation did not provide sufficient ground for such argument. However, some cost items in this category showed meaningful statistical relation for certain generation facilities hinting some possibilities for the candidate of variable costs in the future. Time lag related to cost evaluation, problems related to inventory control and accounting method related to this may block the statistical relationship with the amount of generation. Unified criteria and standardization of the data are necessary before we proceed further to consider them as variable costs.

  • PDF

An Economic Analysis on Dual-fuel Engine Generation for Peak Load (피크부하용 혼소엔진발전의 경제성 분석)

  • Lee, Ok-Bae;Ahn, Jae-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1260-1268
    • /
    • 2012
  • Recently, lack of power reserve margin was observed quite often. In this paper, we studied the method to secure power source for a short time, to cut the utility power peak load, and to reduce the users electricity bills. Emergency diesel generator of an office building is to be converted into a dual-fuel engine generator which is responsible for a portion of the peak load. Compared to the conventional diesel fuel generator, the proposed dual-fuel engine is able to reduce the generation power cost by dual-fuel combustion, and it also mitigates the building's utility power peak load by charging the building's peak load. If the dead resources (a group of emergency dual-fuel engine generators), as a Virtual Power Plant, are operating in peak time, we can significantly reduce future large power development costs. We investigated the current general purpose electricity bills as well as the records of the building electric power usage, and calculated diesel engine generator renovation costs, generation fuel costs, driving conditions, and savings in electricity bills. The proposed dual-fuel engine generation method reduces 18.1% of utility power peak load, and turned out to be highly attractive investment alternative which shows more than 27% of IRR, 76 million won of NPV, and 20~53 months of payback periods. The results of this study are expected to be useful to developing the policy & strategy of the energy department.

ASSESSMENT OF THE COST OF UNDERGROUND FACILITIES OF A HIGH-LEVEL WASTE REPOSITORY IN KOREA

  • Kim, Sung-Ki;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.561-574
    • /
    • 2006
  • This study presents the results of an economic analysis for a comparison of the single layer and double layer alternatives with respect to a HLW-repository. According to a cost analysis undertaken in the Korean case, the single layer option was the most economical alternative. The disposal unit cost was estimated to be 222 EUR/kgU. In order to estimate such a disposal cost, an estimation process was sought after the cost objects, cost drivers and economic indicators were taken into consideration. The disposal cost of spent fuel differs greatly from general product costs in the cost structure. Product costs consist of direct material costs and direct labor and manufacturing overhead costs, whereas the disposal cost is comprised of construction costs, operating costs and closure costs. In addition, the closure cost is required after a certain period of time elapses following the building of a repository.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

Low-Carbon trawl design with analysis of a gear drags and calculation of construction costs using numerical methods (수치해석기법에 의한 어구 저항 분석 및 저탄소 트롤어구 설계와 비용 분석)

  • Lee, Ji-Hoon;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.313-323
    • /
    • 2010
  • Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear during fishing operation is generally related to hydrodynamic resistance on the gear. This research demonstrates a new approach using numerical methods to reduce fuel consumption. By designing the fishing gear using drawing software, the whole and partial resistance force on the gear can be calculated as a result of simulations. The simulation results will suggest suitable materials or gear structure for reducing the hydrodynamic forces on the gear while maintaining the performance of the gear. This research will helpful to reduce the $CO_2$ emissions from fishing operations and lead to reduce fishing costs due to fuel savings.