• Title/Summary/Keyword: fuel cell efficiency

Search Result 633, Processing Time 0.027 seconds

How to Eliminate CO, CO2 and CH4 in H2 & Inert Gas -Possibility of Fuel Cell Application- (수소와 불활성 가스 중 일산화탄소, 이산화탄소, 메탄 제거에 관한 연구 -연료전지에의 적용 가능성-)

  • Lee, Taek-Hong;Cheon, Young-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.220-227
    • /
    • 2004
  • The purpose of this paper is, based on the theoretical background of the principle of gas purification and absorption, and the absorbing ability of metals, to syudy the efficiency of gas purification of inorganic gases using Zr alloys, so as to contribute to the IT industry. To produce and distribute gas with high purity and ultra-high purity, different types of gas purifier are currently being used: distillation type, getter type, catalyst type, absorption at low-temperature type, and membrane separation equipment. From the different purification methods mentioned above, the getter type gas purifier is capable of not only high performance and capacity but also P.O.U(Point Of Use) method. The key of the getter type gas purifier is its efficiency of gas purification, which is the subject chosen for this study.

Determination of an Optimum Orbiting Radius for an Oil-Less Scroll Air Compressor

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kwon, Tae-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.124-129
    • /
    • 2008
  • Design practice has been made on an oil-less scroll air compressor as an air supply device for a 2 kW fuel cell system where air pressure of 2 bar and flow rate of 120 liter/min are required. Basic structure of the scroll compressor includes double-sided scroll wrap for the orbiting scroll driven by two crankshafts connected to each other by a timing belt. These features can eliminate thrust surface which otherwise would produce frictional heat and jeopardize reliable operation of the orbiting scroll and the scroll element's deformation as well. This study focuses on optimum scroll wrap design; orbiting radius has been chosen as an independent design parameter. As the orbiting radius changes, scroll sizes such as scroll base plate and discharge port diameters change accordingly. Gas compression-related losses and mechanical loss also change with the orbiting radius. With a scroll base plate diameter of 120mm at most and discharge port of at least 10mm, the orbiting radius should be within the range of 2.5-4.0mm. With this range of the orbiting radius, it was estimated by performance analysis that the compressor efficiency reached to a maximum of ${\eta}_c$=96% at the orbiting radius of $r_s$=3.5mm for the scroll wrap height-to-thickness ratio of h/t=5.

High Quality DC-DC Boosting Converter Based on Cuk Converter and Advantages of Using It in Multilevel Structures

  • Rostami, Sajad;Abbasi, Vahid;Kerekes, Tamas
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.894-906
    • /
    • 2019
  • In this paper, a DC-DC converter is proposed based on the Cuk converter. The proposed converter has high efficiency and it can be used in multilevel DC-DC converters. A reduction of the inductors size in comparison to Cuk converter and a reduction in the inductors resistance negative effects on efficiency are the important points of the proposed converter. Its voltage ripple is reduced when compared to other converters. Its output voltage has a high quality and does not contain spikes. A theoretical analysis demonstrates the positive points of the proposed converter. The design and analysis of the converter are done in continues conduction mode (CCM). Experiments confirm the obtained theoretical equations. The proposed converter voltage gain is similar to that of a conventional Boost converter. As a result, they are compared. The comparison illustrates the advantages of the proposed converter and its higher quality. Furthermore, a prototype of the proposed converter and its combination with a 2x multiplier are built in the lab. Experimental results validate the analysis. In addition, they are in good agreements with each other.

Synthesis of Nanocrystalline TiO2 by Sol-Gel Combustion Hybrid Method and Its Application to Dye Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Han, Sang-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1495-1498
    • /
    • 2008
  • $TiO_2$ nanopowders were synthesized by new sol-gel combustion hybrid method using acetylene black as a fuel. The dried gels exhibited autocatalytic combustion behaviour. $TiO_2$ nanopowders with an anatase structure and a narrow size distribution were obtained at 400-600 ${^{\circ}C}$. Their crystal structures were examined by powder Xray diffraction (XRD) and their morphology and crystal size were investigated by scanning electron microscopy (SEM). The crystal size of the nanopowders was found to be in the range of 15-20 nm. $TiO_2$ powders synthesized at 500 ${^{\circ}C}$ and 600 ${^{\circ}C}$ were applied to a dye solar cell. An efficiency of 5.2% for the conversion of solar energy to electricity ($J_{sc}$ = 11.79 mA/$cm^2$, $V_{oc}$ = 0.73 V, and FF = 0.58) was obtained for an AM 1.5 irradiation (100 mW/$cm^2$) using the $TiO_2$ nanopowder synthesized by the sol-gel combustion hybrid method at 500 ${^{\circ}C}$.

Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC

  • Wang, Zhenyu;Liu, Shichang;She, Ding;Su, Yang;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.430-438
    • /
    • 2021
  • The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.

Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System (리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석)

  • Lee, J.H.;Kim, K.M.;Jeong, D.Y.;Lee, Jong-T.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

Modeling and Analysis of PEMFC/Battery/Photovoltaic Hybrid Vehicle (고분자 전해질형 연료전지/2차전지/태양전지 하이브리드 자동차에 대한 모델링 및 특성평가)

  • Ji, Hyun-Jin;Ahn, Hyo-Jung;Cha, Suk-Won;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2255-2260
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 30%).

  • PDF

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

A Study on the Noise Property and its Reduction of the FCEV Blower (FCEV 블로워의 소음특성과 개선방향에 관한 연구)

  • Oh, Ki-Seok;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1419-1424
    • /
    • 2007
  • Centrifugal turbo blower is requested highly efficiency and low noise in FCEV, but the noise generated by this machine causes of the most serious problems in the NVH performance. In general, centrifugal turbo blower is dominated by mechanical noise and aerodynamic noise. Mechanical noise is generated by rotation of the bearing, misalignment and unbalance. And aerodynamic noise is generated by the strong intersection between the flow discharged from the impeller and the cut-off in the casing. The first object of this study is to comprehend a noise property of the blower through the noise test. And, second object is to bring up the method that can reduce blower noise.

  • PDF

Study on High Efficiency Power Converter for Fuel Cell Power Generation (연료전지발전용 고효율 계통연계 전력변환기 연구)

  • Ju, Young-Ah;Jeong, Jong-Kyou;Shim, Myong-Bo;Han, Byung-Moon;Cha, Han-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.95-97
    • /
    • 2008
  • 본 논문에서는 연료전지발전용 고효율 계통 연계용 전력변환기를 제안한다. 제안하는 전력변환기는 3상 전류형 능동클램프 DC/DC 컨버터와 계통연계용 인버터로 구성되어 있다. 제안하는 전력변환기의 동작을 분석하기 위해 연료전지의 출력을 모의하는 모델과 제안하는 전력변환기의 모델을 PSCAD/EMTDC를 이용하여 개발하였다. 개발한 시뮬레이션모델을 이용한 분석을 토대로 실험에 의한 검증이 가능한 하드웨어장치의 기본 설계를 실시하였다. 제안하는 전력변환기는 정격출력에서 저 전압특성을 갖는 연료전지를 효율적으로 전력계통에 연계하는데 유용할 것으로 보인다.

  • PDF