• 제목/요약/키워드: fuel cell control

검색결과 424건 처리시간 0.023초

단일 연료전지 셀을 위한 저입력 전압 승압 컨버터의 설계 (Design of Low-Input-Voltage Step-Up Converter for Single Fuel Cell)

  • 임정규;박진주;정세교
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.152-153
    • /
    • 2010
  • This paper presents the design of a low-input-voltage step-up converter. Such circuits can be useful for single fuel cell to generate less than 0.7V. Important issues to design it are physical volume, efficiency and start-up method. In this paper, we propose a step-up converter with a simple start-up circuit. The operation of proposed circuit is presented and the experimental results are provided to verify the feasibility of the proposed technique.

  • PDF

건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발 (Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building)

  • 양석란;김중석;최미화
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.

수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구 (Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV))

  • 이순용;서원범;임지선;최재훈
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

Power control strategies of a DC-coupled hybrid power system for a building microgrid

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제25권3호
    • /
    • pp.50-64
    • /
    • 2011
  • In this paper, a DC-coupled photovoltaic (PV), fuel cell (FC) and ultracapacitor hybrid power system is studied for building microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. The main weak point of the FC system is slow dynamics, because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. A power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build an autonomous system with pragmatic design, and a dynamic model proposed for a PV/FC/UC bank hybrid power generation system. A simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow. The system performance under the different scenarios has been verified by carrying out simulation studies using a practical load demand profile, hybrid power management and control, and real weather data.

고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가 (Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell)

  • 신유철;김영미;오익현;김호성;이무성;현상훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF

음이온교환막 연료전지를 위한 TiO2 함량 조절에 따른 QPAE/TiO2-x 복합막의 치수안정성 및 이온전도도 동시 개선 연구 (Simultaneous Improvement of Dimensional Stability and Ionic Conductivity of QPAE/TiO2-x Composite Membranes According to TiO2 Content Control for Anion Exchange Membrane Fuel Cells)

  • 김상희;유동진
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.19-27
    • /
    • 2022
  • A series of QPAE/TiO2-x (x = 1, 4, 7 and 10 wt%) organic/inorganic composite membranes were prepared as electrolyte membranes for alkaline anion exchange membrane fuel cells by controlling the content of inorganic filler with quaternized poly(arylene ether) (QPAE) random copolymer. Among the prepared QPAE/TiO2-x organic/inorganic composite membranes, the highest ionic conductivity was 26.6 mS cm-1 at 30℃ in QPAE/TiO2-7 composite membrane, which was improvement over the ionic conductivity value of 6.4 mS cm-1 (at 30℃) of the pristine QPAE membrane. Furthermore, the water uptake, swelling ratio, ionic exchange capacity, and thermal property of QPAE/TiO2-x composite membranes were improved compared to the pristine QPAE membrane. The results of these studies suggest that the fabricated QPAE/TiO2-x composite membranes have good prospects for alkaline anion exchange membrane fuel cell applications.

저온영역에서 단열용기를 이용한 연료전지 모의 실험 (Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region)

  • 조인수;권오정;김유;현덕수;박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계 (Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell)

  • 정진희;한재영;성용욱;유상석
    • 대한기계학회논문집B
    • /
    • 제39권6호
    • /
    • pp.505-511
    • /
    • 2015
  • 고체 산화물 연료전지는 $800{\sim}1000^{\circ}C$의 고온에서 작동한다. 고온 작동은 효율에 유리하지만 재료 요구 조건, 신뢰성, 열팽창 문제 등이 발생하여 온도 제어가 중요하다. 본 연구에서는 연료전지 시스템의 열관리를 위한 상태 공간 제어기를 설계하고 응답 특성을 확인하였다. 연료전지 스택과 열관리 핵심부품인 촉매연소기는 집중 용량법을 이용한 과도 응답 모델을 개발하였고, 구성품과 통합하여 정적 운전 특성을 확인하였다. 개발된 비선형 시스템을 정격 운전 조건에서 다중 입력과 출력이 가능한 상태 공간 식으로 선형화하였다. 부하에 따라 응답특성이 현저하게 달라지는 특성을 제어하기 위해 LQR 제어기를 설계하여 궤환 제어 시스템의 온도를 제어하였다. 상태 궤환 제어기가 적어도 두 개의 제어 게인을 가지고 운전 영역에 따른 응답을 보여줄 때, 원하는 온도 응답을 나타냄을 확인하였다.

고분자전해질 연료전지의 중저온 열원을 건물난방에 이용하기 위한 온도 제어장치 개발 (Development of Temperature Control System to use in Building Heating of low Temperature Heat of PEMFC)

  • 차광석;김회서
    • 플랜트 저널
    • /
    • 제10권3호
    • /
    • pp.45-51
    • /
    • 2014
  • 본 연구에서는 기존 가정용연료전지에서 활용이 미약한 중저온의 배열을 건물난방부하에 적용할 수 있도록 온도 안정화 장치를 개발하였으며 이 장치가 기존 난방설비와 연계가 가능하도록 제어시스템을 구축하였다. 연료전지 시스템의 정상작동을 위해서는 연료전지로부터 배출되는 온수의 공급온도가 $60^{\circ}C$이어야 하고 다시 연료전지로 회수되는 작동 유체의 환수온도는 항상 $55^{\circ}C$로 유지하여야 한다. 본고에서는 먼저 스택배열 활용을 극대화하기 위해 CFD 분석을 통해 소형열교환기와 기존 난방설비배관과의 최적 연계장치시스템을 구성하였다. 또한 계절별 난방 수온의 불규칙한 온도변화에 대응하기 위해서 연료전지 스택의 열원과 아파트세대 난방용 환수관을 연결한 온도자동조절 밸브를 사용하여 온도안정화 장치를 개발하였다. 소형열교환기와 통합 활용할 수 있도록 설정된 온수의 온도가 편차 ${\pm}0.5^{\circ}C$ 이내에서 유지되도록 하였다. 이 연구결과를 통해 연료전지인 PEMFC의 배열을 건물난방부하에 활용이 추후 가능할 것으로 예상된다.

  • PDF

100 kW급 용융탄산염 연료전지 시스템 개발 III (시스템 제어 및 운전모드) (System Development of a 100 kW Molten Carbonate Fuel Cell III (System Control and Operation Mode))

  • 임희천;안교상;서혜경;엄영창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1350-1352
    • /
    • 2003
  • For developing a 100 kW MCFC power generation system, Several design parameters for a fuel cell stack and system analysis results by Cycle Tempo, a processing computer soft ware, were described. Approximately two substacks with 90 cells are required to generate 100 kW at a current density of $125\;mA/cm^2$ with $6000\;cm^2$ of cells. An overall heat balance was calculated to predict exit temperature. The 100 kW power is expected only under pressurized operation condition at 3 atm. Recycle of cathode gas by more than 50% is recommended to run the stack at $125\;mA/cm^2$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition. The fuel cell power generation system was designed conceptually with several choices of utilization of anode exhaust gas. To operate and evaluate the MCFC system, control and measurement system and operation mode are designed before 100 MCFC system construction. In system control schematics, OS, PLC and MMI were consisted and have roles for MCFC system control. For operation of 100 kW MCFC system, NS, PS PR mode were considerated step by step and simulated.

  • PDF