• 제목/요약/키워드: fuel Injection Timing

검색결과 338건 처리시간 0.027초

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

The Experimental Investigations of Recirculated Exhaust Gas on Exhaust Emissions in a Diesel Engine

  • 김형남;배명완;박재윤
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1588-1598
    • /
    • 2001
  • The effects of recirculated exhaust gas on the characteristics of NOx and soot emissions under a wide range of engine loads were experimentally investigated by using a four-cycle, four-cylinder, sw irl chamber type, water-cooled diesel engine operating at three engine speeds. The purpose of this study was to develop the EGR-control system for reducing NOx and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system was specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The experiments were performed at the fixed fuel injection timing of 4$^{\circ}$ ATDC regardless of experimental conditions. It was found that soot emissions in exhaust gases were reduced by 20 to 70% when the scrubber was applied in the range of the experimental conditions, and that NOx emissions decreased markedly, especially at higher loads, while soot emissions increased owing to the decrease in intake and exhaust oxygen concentrations, and the increase in equivalence ratio as the EGR rate is elevated.

  • PDF

박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구 (A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구 (A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

선박에서 배출되는 NOx의 배출량 규제에 대한 대응 방안 고찰 (A review on the Plan for the Further Reinforcement of the NOx Emission Limit for Marine Diesel Engine)

  • 장미숙;김상현;강국진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권4호
    • /
    • pp.174-179
    • /
    • 2004
  • 현재 국내 엔진 제작사에서 주로 이용하는 NOx 저감 기술은 low NOx fuel nozzle과 연료분사시기 조정과 같든 엔진 개량방법이지만, 향후 NOx에 대한 규제가 강화될 것을 대비하여 고효율의 NOx 제거기술(EGR, Dn, SCR 등) 도입과 정책적 지원이 요구된다. 또한, THC, PM, CO 등에 대한 추가 규제가 예상되므로 기타 대기오염물질을 제거할 수 있는 DPF/CDPF DOC, HCC 등의 기술을 선박에 도입하기 위한 연구가 이루어져야 한다. 선박에서 발생하는 대기오염물질을 규제하기 위한 법률의 제ㆍ개정시에는 내륙에서 운항되는 유람선 등에 대한 규제가 동시에 이루어져야 할 것이다.

  • PDF

커먼레일 엔진에서 노킹 진단 알고리즘 구현 및 OBD-II 진단기 S/W 설계 방안 (Implement of Knocking diagnostic algorithm and design of OBD-II Diagnostic system S/W on common-rail engine)

  • 김화선;장성진;남재현;장종욱
    • 한국정보통신학회논문지
    • /
    • 제16권11호
    • /
    • pp.2446-2452
    • /
    • 2012
  • 국내외의 배출가스 규제 강화에 부합하기위하여, 사용자 의도에 따른 연료 분사시기와 분사량 조절이 가능한 커먼레일 ECU를 제어할 수 있는 알고리즘 개발의 필요에 따라서 본 논문에서는 커먼레일 엔진 전용 ECU에 적용할 수 있는 노킹 판별 및 엔진 밸런스 보정이 가능한 노킹 진단 알고리즘을 구현하여 시뮬레이터로 개발하였다. 또한 운전자가 직접 차량을 진단하는 운전자 중심의 진단 서비스를 제공하고자 시뮬레이터의 결과를 OBD-II 표준에 의거하는 차량 위주의 진단기로 개발하고자 한다. 이를 위해 자동차 고장진단 신호 및 센서 출력 신호를 송수신하는 유선 시스템과 무선 시스템인 블루투스 모듈을 이용하여 실시간 통신이 제공될 수 있는 OBD-II 진단기 S/W 설계방안을 제안함으로써 차량의 연비향상 및 유해가스 저감을 통한 엔진의 효율성 향상을 실현하도록 한다.

커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구 (Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine)

  • 이형민;명차리;박심수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.508-514
    • /
    • 2010
  • 본 논문은 커먼레일 디젤엔진의 정속운전시 배출되는 나노크기의 입자상 물질을 분석하는데 초점을 두었다. 디젤산화촉매 후단에서 나노입자상 물질의 개수농도 저감수준은 크지 않았으나 매연여과장치 후단에서 분석한 결과 1,000배 정도 저감되는 결과를 확인하였다. 고속 고부하 조건에서는 매연여과장치의 자연재생 효과로 인해 입자상 물질은 증가하였다. 연료분사시기를 BTDC $6^{\circ}CA$ 에서 ATDC $4^{\circ}CA$까지 지각시킨 결과 입자상 물질의 개수농도는 감소하였지만 최지각 조건인 ATDC $9^{\circ}CA$에서는 증가하는 결과를 확인하였다. EGR 적용시 핵화모드 입자상 물질은 저감되는 경향을 보였으며 축적모든 입자는 증가하였다.

ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구 (A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.