• Title/Summary/Keyword: fruit crops

Search Result 257, Processing Time 0.021 seconds

Economic Feasibility of Hill Land Development (산지개발(山地開發)의 경제성)

  • Kim, Dong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.283-295
    • /
    • 1979
  • A new Farmland Expansion and Development Promotion Law was enacted in 1975. This law authorizes the Government to undertake development within a declared "reclamation area", wherever the land owners are unable to do so. In order to give additional impetus to conversion of waste hilly land into productive farmland, these hilly land development projects were conducted as large scale scheme which include soil fertility improvements such as the application of lime and phosphate. Farmland Expansion and Development Promotion Corps has attempted to undertake annual farm surveys in order to obtain some information about hilly land agriculture and farming operations within the reclamation project areas since 1976. As survey data accumulates, more and more clear picture of hilly land farming come to appear and enable us to conduct in-depth study. Effects of such upland reclamation include converting of previously unproductive slopeland into cultivable farmland for lucrative and commercial farming or food production. Furthermore, idle or marginal resources such as farm labor, equipment and compost would be fully employed. Socio-economic effects would include increases in land value and attitude change of farmers. On the other hand the preservation of natural environments might be damaged to the some extend by the projects. As shown in Table 7, the average farm size increased from 3,156 pyeong($3.3m^2$) to 5,562 pyeong, a 76.2% increase. The proportion of small farms with less than I ha dropped from 59.8% to 34.4%, but that of the large farms over 2 ha rose from 13.1% to 32.0% (See Table 8). The survey results indicate that as the farming on reclaimed uplands become time-honored, the acreage devoted for food crop production decreases against the economic crop growing acreage (see Table 6). For example, in the case of uplands reclaimed in 1972, the ratio of food crop acreages decreased from 99.7% in 1972 to 62.5% in 1977, whereas that of economic crop acreages increased from 0.3% in 1972 to 37.5% in 1977. The government used to actively encourage the farmers to carry out food crop production in the reclaimed upland targting toward the realization of self-sufficiency in food grains. It is, however, apparent that the farmers did hardly take the government advises as far as their economic interest were concerned. Yield per 10a. of various crops from the reclaimed uplands by year were surveyed as seen in Table 12. On the average, barley production in the reclaimed areas achieved 83.3% of the average unit yield from the existing upland in its 5 th year. Soybean yields showed a modest increase from 64% in the first year to 95%, in the 5 th year. In contrast, economic crops such as red pepper, totacco and radish achieved their maximum target yields in 3 years from starting to cultivate on the reclaimed farms. In order to test the post economic viability, an economic analysis was performed for each of selected subprojects on the basis of the data obtained through survey. The average actual internal economic rate of return on upland reclamation investments was found to be 20.3% which exceeded other types of projects of land and water development such as tidal land reclamation, irrigation or paddy rearrangement. The actual IRRs of subcategories of upland reclamation projects varied from 17.9% to 21.4% depending upon the kinds of cropping system adopted in each reclaimed areas such as food, economic, fruit or forage crops.

  • PDF

Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment (GM 파파야 개발 및 생물안전성 평가 연구 동향)

  • Kim, Ho Bang;Lee, Yi;Kim, Chang-Gi
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • Papaya (Carica papaya L.) is one of the crops widely planted in tropical and subtropical areas. The papaya fruit has low calories and are plentiful in vitamins A and C and in minerals. A major problem in papaya production is a plant disease caused by the papaya ringspot virus (PRSV). The first PRSV-resistant GM papaya expressing a PRSV coat protein gene was developed by USA scientists in 1992. The first commercial GM papaya cultivars derived from the event was approved by the US government in 1997. Development of transgenic papayas has been focused on vaccine production and limited agricultural traits, including insect and pathogen resistance, long shelf life, and aluminum and herbicide tolerance. Approximately 17 countries, including the USA and China, produced transgenic papayas and/or commercialized them, which provoked studies on biosafety assessment and development of GM-detection technologies. For the biosafety assessment of potential effects on human health, effects of long-term feeding to model animals have been studied in terms of toxicity and allergenicity. Studies on environmental safety assessment include influence on soil-microbial biodiversity and transfer to soil bacteria of GM selection markers. Many countries, such as Korea, the European Union, and Japan, that have strict regulations for GM crops have serious concerns about unintended introduction of GM cultivars and food commodities using unauthorized GM crops. Transgene- and/or GM event-specific molecular markers and technologies for genomics-based detection of unauthorized GM papaya have been developed and have resulted in the robust detection of GM papayas.

Growth and Quality of the Strawberry (Fragaria annanassa Dutch. cvs. 'Sulhyang') as affected by Complex Nutrient Solution Supplying Control System using Integrated Solar Irradiance and Substrate Moisture Contents in Hydroponics (수경재배 시 적산 일사량과 배지 수분 함량 복합 급액 제어에 의한 '설향' 딸기(Fragaria annanassa Dutch. cvs. 'Sulhyang')의 생육 및 품질)

  • Choi, Su Hyun;Kim, So Hui;Lee Choi, Gyeong;Jeong, Ho Jeong;Lim, Mi Young;Kim, Dae Young;Lee, Seon Yi
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2021
  • Strawberry cultivation in Korea is grown in greenhouse, but most farms manage their water supply using a timer control method based on the experience of growers. The timer control has problems in that it is difficult to consider the weather condition, the growth stage of crops, and the moisture content of the substrate, so that the crops cannot be managed at an optimal level, and the accuracy of cultivation management are lacking. The watering methods using integrated solar irradiance and substrate moisture contents are control systems that provide eco-friendly and precise water supply considering the growth conditions of crops. The purpose of this study was to compare the combined water supply control with integrated solar irradiance and substrate moisture contents and timer control method in hydroponic cultivation of strawberries using coir, and to set the optimal integrated solar irradiance level for complex water supply control. The irrigation system was automatically watered when it reached 100, 150, 250 J·cm-2 based on the external solar irradiance, and forced irrigation was performed at a substrate moisture content of less than 60% in all treatments. The amount of irrigation at once was 50 mL. The timer treatment was applied as a control. The smaller the level of integrated radiation to start watering, the greater the daily amount of irrigation. Both the fresh weight and dry weight per plant were higher in the complex irrigation control method than the timer control, and the 100 and 150 J·cm-2 treatment had the highest fresh weight, and the 100 J·cm-2 treatment showed a significantly higher dry weight. The yield was also significantly higher in the complex control method than in the timer, and the early yield increased as the level of integrated solar irradiance was smaller. The fresh weight of fruit was the lowest in the timer-controlled irrigation. As a result of this study, the possibility of combined control irrigation method using integrated solar irradiance and substrate moisture content was confirmed for precise water supply management of strawberries in hydroponics.

Comparison of Agricultural Traits and Physicochemical Properties of Lentil (Lens culinaris Med.), Chickpea (Cicer aretinum L.), and Guar (Cyamopsis tetragonoloba L.) Germplasms Collected from Tropical and Subtropical Regions (열대, 아열대 지역 수집 렌즈콩, 병아리콩, 송이콩 유전자원의 농업형질과 이화학적 특성 비교)

  • Choi, Yu-Mi;Lee, Sukyeung;Lee, Myung-Chul;Oh, Sejong;Hur, Onsook;Cho, Gyu Taek;Yoon, Munsup;Hyun, Do Yoon
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.453-462
    • /
    • 2018
  • This study was carried out to investigate the utilization value of legume crops collected in tropical and subtropical areas. We examined agronomic traits to assess domestic adaptability and evaluated useful components of foreign legumes. We used a total of 201 genetic resources of three legumes, consisting of 68 lentils, 72 chickpeas and 61 guars. The average number of days to flowering of the three legumes ranged from 56.7 to 60.8 days; the shortest in guar and longest in chickpea. The average number of days to growth of the three legumes ranged from the shortest 86.8 days in lentil, to the longest 163.9 days in guar. The maturation period of the three legumes lasted from the end of May until mid-September, based on sowing in March. However, the average yield of lentil was very low, ranging from 0.5 g to 30.6 g, with an average 16.4 g based on 10 plants per accession. The average 100 seed weight of the three legumes was 2.2 g for lentil, 22.9 g for chickpea, and 3.8 g for guar. The crude protein content ranged from 14.1% to 32.4% with an average of 20.4%, the highest for guar and the lowest for chickpea. The average crude oil content in the three legume crops was generally low, ranging from 0.8% in lentil, to 4.3% in chickpea. The average dietary fiber content in the three legume crops varied from 15.7% to 50.7%. Guar was the highest source of fiber, followed by chickpea (19.3%) and lentil (15.7%). From the agricultural traits analysis, chickpea and guar could grow domestically. However, lentil was difficult to flower and fruit normally during the warmer season after May. Therefore, lentil should be considered for late summer cropping during the cool season. The physicochemical properties of the three legumes seem to be useful as they are similar to, or better than, those of the control common bean.

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.

Germanium Contents of Soil and Crops in Gyeongnam Province (경남지역의 토양 및 농작물중 게르마늄 함량)

  • Lee, Seong-Tae;Lee, Young-Han;Lee, Hong-Jae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • To investigate the germanium content in paddy soil in Gyeongnam province, 310 paddy soil samples were collected at 19 areas in Gyeongnam, Ulsan and Busan. Contents of germanium in paddy soils were analyzed in different topographies, soil types and soil textures. Average content of germanium in Gyeongnam was 0.24 mr/kg, those of Masan, Jinju and Hadong were above 0.30 mg/kg. Germanium content with different topographies were no difference. Germanium contents in different soil types were 0.27 mg/kg in well adapted soil and 0.23 mg/kg in poorly drained soil. Germanium contents in different soil textures were 0.27 mg/kg in silt loam and 0.23 mg/kg in sandy loam. To determine germanium content on agricultural product in the field, content of germanium in cereals, vegetables and fruits were analyzed. Germanium content of agricultural product was high in the order of cereals>vegetables>fruits. In case of vegetables, germanium contents were high in the order of leaf vegetables>root vegetables>fruit vegetables. Germanium contents were high with 62 and $65{\mu}g/kg$ in lettuce and young radish, respectively. To analyze the germanium content in medicinal plant, samples were collected from 19 medicinal plants at Hamyang areas. Germanium contents in Angelica keiskei, Ligusticum chuanxiong, Panax ginseng and Atractylodes macrocephala were relatively high with $100{\mu}g/kg$ above.

Evaluation of Yield and Quality from Red Pepper for Application Rates of Pig Slurry Composting Biofiltration (고추에서 SCB액비 시용량 설정을 위한 수량 및 품질 평가)

  • Lim, Tae-Jun;Hong, Soon-Dal;Kim, Seung-Heui;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.171-177
    • /
    • 2008
  • The application in agricultural fields of pig slurry composting biofiltraton amending smell and nutrient unevenness, it is important for the appropriate nitrogen nutrient management to promote the availability of the crops and to minimize the risk of adversely environmental effects. The objective of this study was to determine the application rates of the preplant pig slurry composting biofiltration for red pepper(Capsicum annuum L.) by considering the yield response and the fruit quality such as sugar, capsaicinoid content. Red peppers were grown on plastic film ground under five different pig slurry(PS) application rates and mineral fertilizer(MF 100%) as a control. The effects of a single application of five different doses of PS: PS 0%(no kg N $ha^{-1}$), PS 50%(51.5 kg N $ha^{-1}$), PS 75%(77.3 kg N $ha^{-1}$), PS 100%(103 kg N $ha^{-1}$) and PS 125%(129 kg N $ha^{-1}$) were compared with the recommended mineral treatment(103 kg N $ha^{-1}$) in the pre-planting. The sidedressing N application(87 kg N $ha^{-1}$) was applied to the mineral fertilizer in all treatments. Red peppers were harvested at the mature red stage through five times from 72 days after transplanting(DAT) to 133 DAT. The results indicated that the yield of red pepper was increased with the increase of the N application rates from PS 0% to PS 100%. The highest yield was obtained in PS 100% by 20,843 kg $ha^{-1}$, although there were no significant differences in yield among PS 100, PS 125% and MF 100%. In addition, The contents of soluble sugar and capsaicinoids were not significantly different in all treatments. Accordingly, fertilization recommendations of red pepper to substitute PS for the mineral fertilizer were considered to PS 100%.

Analysis of Mitochondrial Gene Sequence in Etoxazole Resistant Two-Spotted Spider Mite, Tetranychus urticae (Etoxazole 저항성 점박이응애의 미토콘드리아 유전자 서열 분석)

  • Park, Sang-Eun;Koo, Hyun-Na;Yoon, Chang-Mann;Choi, Jang-Jeon;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most important pest species devastating many horticultural and ornamental crops and fruit trees. Difficulty in managing this mite is largely attributed to its ability to develop resistance to many important acaricides. Development of 3,700-folds resistance to etoxazole was found in the population of T. urticae collected from rose greenhouses in Buyeo, Chungnam Province in August 2000. This population has been selected for eleven years with etoxazole (over 500 times), and increased over 5,000,000-folds in resistance as compared with susceptible strain. Also, etoxazole-resistant strain was shown to be maternally inherited. The objective of this study was to determine whether resistance of T. urticae to etoxazole was linked with point mutations in the mitochondrial gene. DNA sequencing of cytochrome c oxidase subunit I (COX1), COX2, COX3, cytochrome b (CYTB), NADH dehydrogenase subunit 1 (ND1), ND2, ND3, ND4, ND5, and ND6 were analyzed by comparing two etoxazole-susceptible and etoxazole-resistant strains. As a result, differences were not detected between the nucleotide sequences of two strains within a mitochondrial gene.

Examining Impact of Weather Factors on Apple Yield (사과생산량에 영향을 미치는 기상요인 분석)

  • Kim, Mi Ri;Kim, Seung Gyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.274-284
    • /
    • 2014
  • Crops and varieties are mostly affected by temperature, the amount of precipitation, and duration of sunshine. This study aims to identify the weather factors that directly influence to apple yield among the series of daily measured weather variables during growing seasons. In order to identify them, 1) a priori natural scientific knowledge with respect to the growth stage of apples and 2) pure statistical approaches to minimize bias due to the subject selection of variables are considered. Each result estimated by the Panel regression using fixed/random effect models is evaluated through suitability (i.e., Akaike information criterion and Bayesian information criterion) and predictability (i.e., mean absolute error, root mean square error, mean absolute percentage). The Panel data of apple yield and weather factors are collected from fifteen major producing areas of apples from 2006 to 2013 in Korea for the case study. The result shows that variable selection using factor analysis, which is one of the statistical approaches applied in the analysis, increases predictability and suitability most. It may imply that all the weather factors are important to predict apple yield if statistical problems, such as multicollinearity and lower degree of freedom due to too many explanatory variables used in the regression, can be controlled effectively. This may be because whole growth stages, such as germination, florescence, fruit setting, fatting, ripening, coloring, and harvesting, are affected by weather.