References
- Lorentzen E, Siebers B, Hensel R and Pohl E (2005) Crystal structure of an archaeal class I aldolase and the evolution of (betaalpha)8 barrel proteins. Biochemistry 44, 4222-4229 https://doi.org/10.1021/bi048192o
- Hall DR, Leonard GA, Reed CD, Watt CI, Berry A and Hunter WN (1999) The crystal structure of Escherichia coli class II fructose-1, 6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity. J Mol Biol 287, 383-394 https://doi.org/10.1006/jmbi.1999.2609
- Marsh JJ and Lebherz HG (1992) Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci 17, 110-113 https://doi.org/10.1016/0968-0004(92)90247-7
- Pegan SD, Rukseree K, Franzblau SG and Mesecar AD (2009) Structural basis for catalysis of a tetrameric class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis. J Mol Biol 386, 1038-1053 https://doi.org/10.1016/j.jmb.2009.01.003
- Gerdes SY, Scholle MD, Campbell JW et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185, 5673-5684 https://doi.org/10.1128/JB.185.19.5673-5684.2003
- Wehmeier UF (2001) Molecular cloning, nucleotide sequence and structural analysis of the Streptomyces galbus DSM40480 fda gene: the S. galbus fructose-1,6-bisphosphate aldolase is a member of the class II aldolases. FEMS Microbiol Lett 197, 53-58 https://doi.org/10.1111/j.1574-6968.2001.tb10582.x
- Wagner J, Lerner RA and Barbas CF (1995) Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science 270, 1797-1800 https://doi.org/10.1126/science.270.5243.1797
- Von der Osten CH, Sinskey AJ, Barbas CF, Pederson RL, Wang YF and Wong CH (1989) Use of a recombinant bacterial fructose-1, 6-diphosphate aldolase in aldol reactions: preparative syntheses of 1-deoxynojirimycin, 1-deoxymannojirimycin, 1, 4-dideoxy-1, 4-imino-D-arabinitol, and fagomine. J Am Chem Soc 111, 3924-3927 https://doi.org/10.1021/ja00193a025
- Liu J, Hsu C-C and Wong C-H (2004) Sequential aldol condensation catalyzed by DERA mutant Ser238Asp and a formal total synthesis of atorvastatin. Tetrahedron Lett 45, 2439-2441 https://doi.org/10.1016/j.tetlet.2004.01.110
- Blom NS, Tetreault S, Coulombe R and Sygusch J (1996) Novel active site in Escherichia coli fructose 1,6-bisphosphate aldolase. Nat Struct Biol 3, 856-862 https://doi.org/10.1038/nsb1096-856
- Galkin A, Li Z, Li L et al (2009) Structural insights into the substrate binding and stereoselectivity of giardia fructose-1,6-bisphosphate aldolase Biochemistry 48, 3186-3196 https://doi.org/10.1021/bi9001166
- Daher R, Coincon M, Fonvielle M et al (2010) Rational design, synthesis, and evaluation of new selective inhibitors of microbial class II (zinc dependent) fructose bis-phosphate aldolases. J Med Chem 53, 7836-7842 https://doi.org/10.1021/jm1009814
- Capodagli GC, Sedhom WG, Jackson M, Ahrendt KA and Pegan SD (2014) A noncompetitive inhibitor for Mycobacterium tuberculosis's class IIa fructose 1,6-bisphosphate aldolase. Biochemistry 53, 202-213 https://doi.org/10.1021/bi401022b
- Capodagli GC, Lee SA, Boehm KJ, Brady KM and Pegan SD (2014) Structural and functional characterization of methicillin-resistant Staphylococcus aureus's class IIb fructose 1,6-bisphosphate aldolase. Biochemistry 53, 7604-7614 https://doi.org/10.1021/bi501141t
- Lee SJ, Jang JH, Yoon GY et al (2016) Mycobacterium abscessus D-alanyl-D-alanine dipeptidase induces the maturation of dendritic cells and promotes Th1-biased immunity. BMB Rep 49, 554-559 https://doi.org/10.5483/BMBRep.2016.49.10.080
- Kim JH, Choi JS, Kim S et al (2015) Synergistic effect of two E2 ubiquitin conjugating enzymes in SCF(hFBH1) catalyzed polyubiquitination. BMB Rep 48, 25-29 https://doi.org/10.5483/BMBRep.2015.48.1.057
- Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242 https://doi.org/10.1107/S0907444910045749
- Emsley P, Lohkamp B, Scott WG and Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 https://doi.org/10.1107/S0907444910007493
- Murshudov GN, Skubak P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures Acta Crystallogr D Biol Crystallogr 67, 355-367 https://doi.org/10.1107/S0907444911001314
- Afonine PV, Grosse-Kunstleve RW, Echols N et al (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68, 352-367
- Laskowski R, MacArthur M, Moss D and Thornton J (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283-291 https://doi.org/10.1107/S0021889892009944
- Krissinel E (2012) Enhanced fold recognition using efficient short fragment clustering. J Mol Biochem 1, 76-85
- Schrodinger L (2010) The PyMOL Molecular Graphics System, Version 1.3r1.
- Notredame C, Higgins DG and Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205-217 https://doi.org/10.1006/jmbi.2000.4042
- Gouet P CESD and Metoz F (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatic 15, 305-308 https://doi.org/10.1093/bioinformatics/15.4.305