• Title/Summary/Keyword: frozen ground

Search Result 101, Processing Time 0.027 seconds

Assessment of Frozen Soil Characterization Via Electrical Resistivity Survey (전기비저항 탐사를 활용한 동결 지반의 거동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.115-125
    • /
    • 2023
  • In this study, we evaluated the behavior of frozen soil using an electrical resistivity survey method-a nondestructive technique-and examined its characteristics through field experiments. Frozen soil was artificially prepared by injecting fluid to accelerate the freezing process, and naturally frozen soil was selected in a nearby area for comparison. A dynamic cone penetration test (DCPT) was performed to compare the reliability of the electrical resistivity survey, and time-domain reflectometry surveys were performed to assess the moisture content of the ground. Field experiments were conducted in February-when the atmosphere temperature was below freezing-and May-when the temperature was above freezing. This temperature-compensated method was used to determine reliability because the behavior of frozen soil depends on the underlying temperature. In the resistivity survey method, a section of high electrical resistivity was observed under freezing conditions due to the frozen water and converted into porosity. The converted porosity was compared with the porosity inferred from the DCPT, and the results showed that the measured electrical resistivity was valid.

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

Prediction of Adfreeze Bond Strength Using Artificial Neural Network (인공신경망을 활용한 동착강도 예측)

  • Ko, Sung-Gyu;Shin, Hyu-Soung;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.71-81
    • /
    • 2011
  • Adfreeze bond strength is a primary design parameter, which determines bearing capacity of pile foundation in frozen ground. It is reported that adfreeze bond strength is influenced by various affecting factors like freezing temperature, confining pressure, characteristics of pile surface, soil type, etc. However, several limited researches have been performed to obtain adfreeze bond strength, for past studies considered only few affecting factors such as freezing temperature and type of pile structures. Therefore, there exists a limitation of estimating the design parameter of pile foundation with various factors in frozen ground. In this study, artificial neural network algorithm was involved to predict adfreeze bond strength with various affecting factors. From past five studies, 137 data for various experimental conditions were collected. It was divided by 100 training data and 37 testing data in random manner. Based on the analysis result, it was found that it is necessary to consider various affecting factors for the prediction of adfreeze bond strength and the prediction with artificial neural network algorithm provides enough reliability. In addition, the result of parametric study showed that temperature and pile type are primary affecting factors for adfreeze bond strength. And it was also shown that vertical stress influences only certain temperature zone, and various soil types and loading speeds might cause the change of evolution trend for adfreeze bond strength.

A Study on the Effect of Pile Surface Roughness on Adfreeze Bond Strength (말뚝표면 거칠기에 따른 동착강도 변화에 관한 연구)

  • Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.79-88
    • /
    • 2011
  • Adfreeze bond strength develops upon freezing of pore water within soil and at foundation surface. It has been reported that various factors like temperature, soil type, and pile surface roughness affect adfreeze bond strength. Especially, pile surface roughness has been considered as a primary factor to design pile foundation in frozen ground. It has usually been estimated with fixed correction factors for pile materials. However, even if the pile foundation material is the same, the surface roughness could vary depending on the production circumstances. In this study, laboratory test was carried out to quantitatively analyze the effects of surface roughness on the adfreeze bond strength, and fractal dimension was used as a measure for surface roughness. Test results showed that adfreeze bond strength increased with decreasing temperature, increasing vertical stress and surface roughness. The adfreeze bond strength varies sensitively with surface roughness in the early freezing section of $-2^{\circ}C$, but its sensitivity decreased in the temperature ranging between $-2^{\circ}C$ to $-5^{\circ}C$. The results conclude that the roughness highly affects the frictional resistance of pile surface in frozen ground; however, the roughness does not affect considerably when the temperature drops below about $-2^{\circ}C$.

Morphogenetic Environment of Jilmoe Bog in the Odae Mountain National Park (오대산국립공원 내 "질뫼늪"의 지형생성환경)

  • Son, Myoung-Won;Park, Kyeong
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.2
    • /
    • pp.133-142
    • /
    • 1999
  • The wetland is very important ecologically as a habitat of diverse organisms. The purpose of this paper is to elucidate the morphogenetic environment of Jilmoe Bog found in the Odae Mountain National Park Jilmoe Bog is located in the high etchplain(1,060m) where Daebo Granite which had intruded in Jura epoch of Mesozoic era has weathered deeply and has uplifted in the Tertiary. The annual mean temperature of study area is $5.3^{\circ}C$, the annual precipitation is 2,888mm. The minimun temperature of the coldest month(january) is below $-30^{\circ}C$ and the depth of frozen soil is over 1.6m. Jilmoe bog consists of a large bog and a small bog. The length of the large bog is 63m and its width is 42m. The basal surface of Jilmoe bog is uneven. Jilmoe bog is a string bog fanned due to frost actions. In String bog, its surface is wavy with stepped dry hills and net-like troughs crossing hill slope. It seems that string bog is related to the permofrost or seasonal permofrost of cold conifer forest(taiga) zone(where the depth of frozen soil is very deep in the least in winters). String bog is a kind of thermokarst that frozen soil thaws differentially locally in declining permofrost and ground surface becomes irregular. There is turf-banked terracette of width $30{\sim}40cm$ in the headwall of small cirque-type nivation hollow formed at footslope of Maebong mountain around Jilmoe bog. This turf-banked terracette is formed by the frost growth of soil water below grass mat in periglacial climate environment. Where water is plentiful such as a nivation follow${\sim}$valley corridor and a headwall of valley, turf patterned grounds of width $30{\sim}50cm$ are found. This turf patterned ground is 'unclassified patterned ground', earth hummock. In conclusion, Jilmoe bog is a string bog of thermokarst that the relief of ground surface is irregular according to locally differentially thawing of permofrost(frozen soil). Jilmoe bog is high moor, its surroundings belongs to periglacial environment that turf-banked terracette and turf patterned ground are fanned actively.

  • PDF

EPR Spectra of ${\alpha}-1,2,3-[HPV(IV)V_2W_9O_{40]}^{6-}$, a Delocalized Mixed-Valence Compound

  • Hyunsoo So;Chul Wee Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.115-118
    • /
    • 1990
  • Solution and frozen solution EPR spectra of $\alpha-1,2,3-[HPV(IV)V_2W_9O_{40}]^{6-}$ have been analyzed. The isotropic hyperfine coupling constants remain constant at 350-77 K, indicating that the unpaired electron is delocalized over three vanadium atoms probably even in the ground state.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence

  • Kim, Dongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2738-2742
    • /
    • 2014
  • Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.

The Study of FAA's certification policy for approving the ground use of deicing/anti-icing fluids on airplane (항공기용 결빙방지액의 지상 사용승인을 위한 FAA의 최근 인증정책 연구)

  • Kim, You gwang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.51-57
    • /
    • 2013
  • This study describes the Federal Aviation Administration(FAA) certification policy for approving the use of Type II, III, and IV deicing/anti-icing fluids on small category airplanes. These fluids can be characterized as non-Newtonian, pseudo-plastic fluids, also known as "thickened" fluids. Deicing fluids are used before takeoff to remove frost or ice contamination, while anti-icing fluids are used before takeoff to prevent frost or ice contamination from occurring for a period of time(referred to as "holdover time") after application. Thickened deicing/anti-icing fluids can affect airplane performance and handling characteristics and their residue may cause stiff or frozen flight controls. This study also describes an approval process that may be used by type certificate holders and applicants for a type certificate under parts 23 to support operational use of these fluids on their airplanes.

The Optimum Temperature of Brine Heating System for LNG Storage Tank (LNG 저장탱크용 Brine Heating System의 최적온도 설정)

  • Oh, B.T.;Hong, S.H.;Yang, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.361-366
    • /
    • 2001
  • The purpose of installation of the brine heating system for LNG storage tank is the prevention of ground freezing. If the ground of LNG tank areas is frozen, it is caused by safety problems. The design of brine heating system for LNG storage tank which is constructing in our country is not well considered about domestic weather conditions and economical efficiency. Therefore, this paper reports on the study of the optimized temperature of inside pipes and cooling process through the transient analysis by using the existing brine heating system.

  • PDF