• Title/Summary/Keyword: front tracking

Search Result 146, Processing Time 0.029 seconds

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

EMERGENCY BRAKING CONTROL OF A PLATOON USING STRING STABLE CONTROLLER

  • Kang, Y.;Hedrick, J.K.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.89-94
    • /
    • 2004
  • In this paper, a safe control strategy is considered in the situation when a platoon of vehicles need to decelerate rapidly. When the vehicles ate spaced closely, it is known that the reference information should be transmitted to the whole platoon to minimize the undesirable effects of small leader disturbances. However, the vehicle control should also depend on the preceding vehicle position to maintain the desired distance. Tracking the preceding vehicle position can lead to amplification of the control input along the following vehicles, therefore the vehicles in the rearward generally exert larger maximum control input than the vehicles in the front. The theoretical bounds for the $i^{th}$ vehicle control input are calculated using a linear vehicle and controller model. In the simple illustrative example, the designed controller maintains string stability, and the control inputs of the following vehicles stay within bounds.

Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot (차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어)

  • Chung, Woo-Jin;Yoo, Kwang-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

ANALYTICAL AND NUMERICAL STUDY OF MODE INTERACTIONS IN SHOCK-INDUCED INTERFACIAL INSTABILITY

  • Sohn, Sung-Ik
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.155-172
    • /
    • 2000
  • Mode interactions at Unstable fluid interfaces induced by a shock wave (Richtmyer-Meshkov Instability) are studied both analytically and numerically. The analytical approach is based on a potential flow model with source singularities in incompressible fluids of infinite density ratio. The potential flow model shows that a single bubble has a decaying growth rates at late time and an asymptotic constant radius. Bubble interactions, bubbles of different radii propagates with different velocities and the leading bubbles grow in size at the expense of their neighboring bubbles, are predicted by the potential flow model. This phenomenon is validated by full numerical simulations of the Richtmyer-Meshkov instability in compressible fluids for initial multi-frequency perturbations on the unstable interface.

  • PDF

Face Detection based on Video Sequence (비디오 영상 기반의 얼굴 검색)

  • Ahn, Hyo-Chang;Rhee, Sang-Burm
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.45-49
    • /
    • 2008
  • Face detection and tracking technology on video sequence has developed indebted to commercialization of teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Complex background, color distortion by luminance effect and condition of luminance has hindered face recognition system. In this paper, we have proceeded to research of face recognition on video sequence. We extracted facial area using luminance and chrominance component on $YC_bC_r$ color space. After extracting facial area, we have developed the face recognition system applied to our improved algorithm that combined PCA and LDA. Our proposed algorithm has shown 92% recognition rate which is more accurate performance than previous methods that are applied to PCA, or combined PCA and LDA.

  • PDF

Studies of Lateral Impedance Force Control for an Autonomous Mobile Robot with Slip (자율 주행 이동 로봇의 슬립을 고려한 횡방향 임피던스 힘제어에 대한 연구)

  • Hsia T. C.;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.161-167
    • /
    • 2006
  • In this paper, lateral force control of a mobile robot with slip is presented. First, the bicycle model of a mobile robot is derived for the front steering. Second, impedance force control algorithm is applied to regulate contact force with environment. The desired distance is specified conservatively inside the environment to guarantee to make contact. Different stiffness of environment has been tested for force tracking task. Simulation results show that the proposed control algorithm works well to maintain desired contact force on the environment.

A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE (자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow (유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

A LIQUID DROPLET SIMULATION ON ZIG-ZAG MOTION (단일 액적의 Zig-Zag 운동 시뮬레이션)

  • Jung, Rho-Taek
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.63-68
    • /
    • 2009
  • The motion of a rising liquid droplet is different that of a bubble motion. Treatment of liquid drops is more complex because internal motion must be considered. A 3D unstructured CFD code has been developed to solve incompressible N-S equation for the droplet simulation. This front-tracking consideration which the interface is tracked explicitly is very available to apply for not only exact interface topology but also the high schmidt number issue, such as $CO_2$ dissolution. This paper is forced on the zig-zag motion of the liquid droplet. The simulation shows that if the rising droplet is located at the corner of the zig-zag path, the velocity is low and shape of the droplet is more spherical shape, results in the less drag coefficient. Twin horse shoe vortexes behind the rising droplet are presented and the topology of the droplet is compared with an experimental result during one period of the path.

Animation of Bubbles in Liquid (액체 속 공기방울의 애니메이션)

  • Hong, Jeong-Mo;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.1
    • /
    • pp.1-2
    • /
    • 2003
  • 본 논문에서는 액체와 기체가 상호작용 하는 현상들에 대한 새로운 유체 애니메이션 기법을 액체 속 공기방울의 예를 사용하여 제시한다. 기존의 자유표면 시뮬레이션 기법들과는 달리 액체와 기체를 함께 시뮬레이션 할 경우에는 기체의 유동과 액체의 유동을 동시에 다루어야 하며 비중 차에 의한 부력과 경계면에서의 표면장력 등을 추가적으로 고려해야 한다. 유체의 토폴로지 변화를 쉽게 다루면서도 수치적 분산을 막기 위하여 유체 역학 분야의 VOF (Volume of Fluid) 기법과 프론트 추적 (Front-tracking) 기법을 혼합하여 사용하였다. 액체와 기체의 경계면은 마칭 큐브즈 알고리즘을 사용하여 폴리곤으로 복원된 후 버텍스 쉐이더 기술들을 사용하여 액체-기체 경계면의 광학적인 특성을 표현할 수 있었다.

  • PDF