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ANALYTICAL AND NUMERICAL STUDY OF
MODE INTERACTIONS IN SHOCK-INDUCED
INTERFACIAL INSTABILITY

SUNG-IK SOHN

ABSTRACT. Mode interactions at unstable fluid interfaces induced by
a shock wave (Richtmyer-Meshkov Instability) are studied both analyt-
ically and numerically. The analytical approach is based on a potential
flow model with source singularities in incompressible fluids of infinite
density ratio. The potential flow model shows that a single bubble
has a decaying growth rates at late time and an asymptotic constant
radius. Bubble interactions, bubbles of different radii propagates with
different velocities and the leading bubbles grow in size at the ex-
pense of their neighboring bubbles, are predicted by the potential flow
model. This phenomenon is validated by full numerical simulations
of the Richtmyer-Meshkov instability in compressible fluids for initial
multi-frequency perturbations on the unstable interface.

1. Introduction

When an incident shock collides with an interface between two fluids of
different densities, it bifurcates into a transmitted shock and a reflected
wave, while the interface becomes unstable. This interfacial instability is
known as Richtmyer-Meshkov (RM) instability and plays a critical role in
the design of inertial confinement fusion capsule. The dominant character-
istics of an RM unstable interface are fingers, known as bubbles and spikes,
of each phase extending into the region occupied by the opposite phase.
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Thus, A bubble (spike) is a portion of the light (heavy) fluid penetrating
into the heavy (light) fluid.

Since Richtmyer [1] proposed the linear theories for the RM instability,
extensive research has been directed to solve this instability problem [2-8].
However, most studies were limited to simple initial conditions like pure
sinusoidal perturbation of the interface. Only a few researchers have con-
sidered initial multi-frequency perturbations. The main purpose of this
paper is to provide an analytical model for mode interactions at late non-
linear stages of the RM instability and validate the analytical model by full
nonlinear numerical simulations for initial multi-frequency perturbations
on the unstable interface.

The evolution of RM unstable interface with initial multi-frequency per-
turbations excite nonlinear interactions among different frequencies and
much more complicated than that of initial single frequency perturbations.
At the late nonlinear stage of multi-frequency perturbations, bubbles of
different radii propagates with different velocities and the leading bubbles
grow in size at the expense of their neighboring bubbles. This phenome-
non is known as bubble interactions. The analytical model presented in
this paper is a potential flow model with source singularity for the bubble
interactions of the RM instability in incompressible fluids of an infinite
density ratio.

We perform full numerical simulations of the RM instability in com-
pressible fluids for initial multi-frequency perturbations on the unstable
interface to investigate dynamics of the mode interactions and validate
the potential low model. The numerical simulation of the RM insta-
bility has been a challenging problem to researchers, since the problem
involves complicated wave interactions of discontinuous waves and highly
distorted interfaces. Most of previous published simulations of the RM
instability were for the evolution of the initial single mode of an unstable
interface [2, 6].

The numerical method used for simulations of mode interactions of
the RM instability is the front tracking method [9]. The front tracking
method is a well-established algorithm for tracking discontinuous fronts
and interfaces and provides high resolutions of a front, avoiding oscillations
behind a discontinuity.

In Section 2, we present a potential flow model for bubble interactions in
incompressible fluids. Section 3 describes the front tracking method briefly
and discuss the difficult aspects in the simulations of mode interactions of
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the RM instability. Section 4 gives the results of the numerical simulations.
Section 5 gives conclusions.

2. Analytical Model

In this section, we present an analytical model for bubble interactions
of the RM instability, based on a potential flow with source singularities
in incompressible fluids of an infinite density ratio. Even though, in real-
ity, the RM instability occurs in compressible fluids, the incompressibility
assumption is valid for the nonlinear stage. The author showed that the
dynamics of RM unstable system changes from a compressible, approxi-
mately linear one to a nonlinear, approximately incompressible one [7].

We note that Richtmyer-Meshkov instability is closely related to the
Rayleigh-Taylor (RT) instability (gravity induced instability) [10, 11, 12].
The similarity of these two instabilities is that they are interfacial insta-
bilities induced by an external force (shock wave in RM case, and gravi-
tational force in RT case). Kull proposed the potential flow model with
a source singularity for the RT single bubble evolution [13] and Zufiria
extended the Kull’s potential flow model to the RT multiple bubble in-
teractions [14]. We apply the Kull-type potential flow model to the RM
bubble interactions.

2.1. Single Bubble Equations

First, we derive the equations for a single bubble evolution. Consider
the bubble rising in a vertical channel filled with an incompressible irro-
tational inviscid flow. The density of the light fluid is zero. From the
assumption of the flow, there exists a complex potential for the bubble
W(z) = ¢ + iy, where ¢ and ¢ are the velocity potential and the stream
function, respectively. The bubble is characterized by the velocity of the
bubble tip U, the local radius of curvature at the bubble tip R, and the
location of the bubble tip X with respect to a frame of reference attached
to the channel.

The potential for the bubble can be modeled by the complex potential
with a source singularity inside the bubble. Another potential flow model
was proposed by Layzer [11]. Layzer applied the analytic velocity poten-
tial of a sinusoidal form for the bubble evolution and obtained a result for
the limiting velocity of the RT bubble. Layzer’s model has been extended
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to the RM bubble by Hecht et al. [5]. However, as Layzer pointed out
in his paper, the bubble should be modeled by the potential with source
singularity. Furthermore, Kull showed that the potential with source sin-
gularity (Eq. (4)) is a generalization of the Layzer’s model of a sinusoidal
velocity potential and contains the result of the sinusoidal velocity poten-
tial in some limits of the parameters in steady state case [13].

The potential with a source singularity gives a nice description for the
front of the bubble, but is not correct for the flow in the far field behind
the bubble. The source potential gives a constant velocity at the far field
behind the bubble. However, in reality, the spikes are formed in the flow.
Therefore, our model assumes that the spike gives a little influence to the
dynamic of the bubble. This assumption of a negligible effect of the spike
is supported by the agreement of our model with the results of numerical
simulations for full Euler equations in Section 4.

We describe the evolution in a comoving frame (Z,§) rising with the
bubble. Then the origin of coordinate (%, §) is attached to the bubble tip
z = X(t),y = L/2 moving with the bubble velocity U in the z direc-
tion, where L is a channel width (see Fig. 1). The bubble shape in the
neighborhood of the bubble tip is approximated to second order [15]:

(1) n(z,9,t) = §° + 2R(t)z = 0.

The bubble evolution can be determined by the kinematic boundary
condition

Dn(,9,t) _ dR_ .
= 4L 2 =
(2) Dt 2dt$+ Ru+2jv =20
and the Bernoulli equation
op 1 9 . adu,

where u and v are the £ and § component of fluid velocity in the comoving
frame with the vertex of the bubble, respectively, and g is an external
acceleration.

The potential for a source is described by W = @ log Z where ) denotes
the source strength. Then, the potential of a source at the origin in a
channel of width L, W = @ log [sinh(7Z/L)], can be derived by Schwarz-
Christoffel transformation [16]. Combining a source located at a distance
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A below the bubble tip with a uniform incoming flow, we obtain the
resulting source potential for the bubble

sinh£(z + A)

-Uz.
exp%(2 + A) ¢

(4) W(z) =Q log !

Here £ is a characteristic wave number defined as k = 27/\ where A= L
denotes a channel width. The velocity potential and the stream function
are given by

(5) ¢ = % log[cosh k(& + A) — cos k] — (%kQ +U)i,

(6) ¥ = @ arctan[coth g(:?: + A) tan gg}] - (—;—kQ + U)g.

Notice that ¢ — —UZ as £ — +o0, and ¢ — —eF4U% as £ — —oo, from
Eq. (5) and log[cosh k(Z + A)] ~ —kZ as Z — —o0.
Expanding (4) in powers of Z, we have

- Ci N
(7) Wzin—'z—Uz.
i=0

The expressions for coefficients ¢; are given shortly.

From the relation 4% = u — v and Eq. (1) and (7), the velocity u and

v are
(8) v = Qla+ (e +R)E] - U+ 0(?),
(9) v o= —cQf+ 0(3Y?).

Substituting (8) and (9) into Eq. (2), and the zeroth and first order
equations in Z gives

dX

(10) at = U=0aQ,
(11) % = —Q(3¢c2+ csR)R.

Substituting expansions in powers of & for (5), or real part of (7), the
first and second order equations in Z gives

d dA
1) (@reRil+eeranit =@:dr -y
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Co R? dQ R?2 dA
(13) (2 3R+c46)dt Q( +C4R+C56)dt

Q? 2
= (02 — 20203R + (303 - 40264)—)

using the fact %ci = ci+1~(g, 1 > 1. Here, the expressions for c¢; are

_ k _ k2ekA
Q9 =T GA_7p 2T T kA 1)
. KPeFA(R 4 1) | KtekA(eRA 4 4ek4 4 1)
G T T 0 4T (eF4 — 1)d ’
_ kPeFA (e 4 11624 4 11eF4 4 1)
€ = (eFA 1) :

The evolution of a single bubble is determined by the system of four
first order ordinary differential equations (10), (11), (12) and (13) with
given initial conditions.

The streamline through an arbitrary reference point (2, %) is defined
by ¥(Z,9,t) = (%o, Yo, t). Figure 1 is a streamline pattern for a single
bubble system. The source is located at the £ = —A,7 = 0, and the
curve obtained by the streamline 1 = 0 through the stagnation point at
Z = ¢ = 0 determines the bubble profile. The analytic expression of the
bubble profile is found to be

(14) y= 715 log [i‘l(—d@—} —A

sin(aekx)
where a = e7* and € = ;.

Now, we show the results for the RM single bubble evolution. We
consider the Egs. (10), (11), (12) and (13) with ¢ = 0. This is an impulsive
approximation for an incompressible flow. We use a fourth-order Runge-
Kutta method to solve the Egs. (10), (11), (12) and (13).

The results of the RM single bubble evolution are given in Figure 2 for
the initial conditions R = 0.2, = 0.1, A = 0.1. The channel width is L, =
m. The bubble profiles are determined by Eq. (14). The curves from the
bottom to the top correspond to the bubble profiles for ¢t = 0, 2, 4, 6, 8, 10.
Fig. 2 shows that the growth rates are large at early times and become

smaller at late times.
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FIGURE 1. Streamline pattern of a potential flow model
with source singularity. The curve emanated from the stag-
nation point at £ = § = 0 determines the bubble profile,
and the source is located at the z = —A,§ = 0.

Figure 3 gives the results of state variables in the RM single bubble
evolution for the same initial conditions as the ones in Fig. 2. Figure 3
shows that the bubble velocity U and the source strength @ decay to zero,
and the local radius of the bubble R and the distance of the source from
the bubble tip A reach the values 1.30 and 1.33, respectively. We have
checked that, for any positive initial conditions, R and A have a steady
state solution R*® = 1.30 and A*® = 1.33, and U and ) decay to zero
asymptotically. Recently, Hecht et al. determined an asymptotic bubble
growth rate of 2/(3kt), based on the Layzer’s model of an analytic velocity
potential [5]. In Fig. 3(a), we compare this asymptote with our result of
the bubble velocity. It shows two solutions are in a good agreement at
late times.
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FIGURE 2. Single bubble evolution of Richtmyer-Meshkov
instability for the initial conditions R = 0.2, = 0.1, A =
0.1.

The analogous results for the RT case (g=constant) are previously stud-
ied in [13, 14] and it has been found that the single-mode RT bubble at-
tains a constant asymptotic velocity and a constant asymptotic radius. It
is interesting to note that the RM asymptotic bubble radius, Ry, = 1.30,
is larger than the RT asymptotic bubble radius, Rgy = 0.866 [14].

2.2. Multiple Bubble Equations

Next, we consider bubble interactions. Assume that N distinct bubbles
rise in a channel of width L with the walls as axes of symmetry and the
positions of the bubble tips are Z,, = X,, + i¥,,,m=1,2,--- | N.

We neglect the lateral effects and assume Y, are constants. Since each
bubble is described by a potential with source singularity, the potential
for multiple bubbles can be constructed as the sum of the potentials of all
bubbles with source singularity located at Z,,— A,,, m = 1,2, .., N [14, 16].
Then, rearranging (4) and applying the method of image, the resulting
potential in a comoving frame with the m-th bubble tip is
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FIGURE 3. The results of the single bubble evolution in
the RM instability for the initial conditions R = 0.2,Q =
0.1,A = 0.1. (a) bubble velocity U and asymptote of bub-
ble growth rate 2/(3kt), (b) Radius of the bubble tip R,
(c) Source strength @, (d) Distance of the source from the

bubble tip A.
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N
(15) W (2) = 3 Q; log[(1 — 8B4 2n=9)(1 4 8 &~A=Za=2)] U] 2
i=1

where the star denotes the complex conjugate.

Satisfying Eq. (2) and (3) with the potential (15), we can develop a set
of 4N system of ordinary differential equations for U,,, R, @m and Ap,
which describe the motion of the N bubbles. The initial conditions for the
longitudinal locations of bubbles X,, are perturbed from zero to generate
the interaction and the ones for the horizontal locations of bubbles Y,
are equally spaced values of the channel width. The initial conditions
for R,,, A, are scaled steady state solutions of the single bubble: R,, =
%, A, = AA}: for m = 1, .., N; the initial conditions for @, are arbitrary
given.

The equations are applied to the case of two bubble interactions (N =
2) as a simple model of multiple bubble interactions. Figure 4 shows
the results of bubble tip positions and local radius of bubbles in RM
two bubble interactions in the channel of width L = m. Initially, X is
moved back from zero by 5% of the radius of middle bubble R;. The
perturbation in the size of the bubble has same effect as a perturbation in
the longitudinal location of the bubble.

Fig. 4 clearly demonstrates the bubble interaction process. In Fig. 4 (a),
we see that the two bubbles advance and compete for a while. The higher
bubble grows faster than the other, since it has more free space, and finally
attains the asymptotic velocity of a single bubble. The lower bubble grows
slower, and reaches a possible maximum, and then is washed downstream.
Fig. 4 (b) shows that the higher bubble expands, while the lower bubble
shrinks and recovers its size at later times. The higher bubble finally
attains the asymptotic radius of a single bubble, Ry = 1.3. Therefore,
the front of channel is eventually filled with the higher bubble. On the
other hand, the smaller (or, lower) bubble tends to recover its size when it
is in the far downstream. This result is due to the incorrect description of
our model for the flow in the far field behind the bubble. It is mentioned
that, in reality, the spikes are formed at the back of the bubble and the
smaller bubble merge into the spike region. We can see that the dynamics
in the far field give a little influence to the motion of the front bubble.
This result is validated in the full numerical simulations in Section 4. The
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FIGURE 4. The results of two bubble interactions in the
RM instability. (a) Height of bubbles, (b) Radius of bubbles.

behavior of recovering the size of the smaller bubble also occurs in the
potential flow model for the RT instability [14]. Therefore, the overall
bubble interaction process of the RM instability is qualitatively similar to
the one of the RT instability, although the growth rate of the front bubble
is different.

3. Numerical Method

We apply the front tracking method for full numerical simulations of
mode interactions of the RM instability in compressible fluids to validate
the theoretical results obtained in Section 2.

The fluid motion of the Richtmyer-Meshkov instability in compressible
fluids can be described by the inviscid Euler equations [17], that is

9p;  Opjus) | 9(pjv;)
ot + ox * dy
d(pju;) 0

0
—~ (p.oy? i) —
at + al_ (p.]u] +p) + ay (p.]u]v]) 07

(16)

=0,

(17)
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A p;v; 0 0
(18) —(‘%]tv—]) + 3= (pjuvs) + @(Pjvf +p) =0,
0(p; E; 0 0
(19) __(/gt ) + gg[uj(PjEj +p)l+ a—y[vj(p,-Ej +p)] =0.

Here p is the density, u the z-components of the velocity, v the y-
components of the velocity, p the pressure; F the specific total energy.
The index j = 1, 2 distinguished components of fluids on each side of the
interface. Eq. (16) is conservation of mass, Eqs. (17)-(18) are conser-
vation of momentum in the z,y directions, respectively, and Eq. (19) is
conservation of energy. The system is closed by specifying equations of
state. We use the equations of state for a polytropic gas,

1 p  ui4f

—_— + ,
(vi = 1) b 2
where 7 is the polytropic exponent.

We solve the hyperbolic system of Egs. (16)-(20) by the front tracking
method. The front tracking method has been developed over the years by a
group of researchers [9, 18, 20] and has been successfully applied to a wide
variety of problems having sharp interface or wave fronts which include gas
dynamics, porous media, solid mechanics [9, 19, 20, 21]|. Here we briefly
describe the algorithm of the front tracking method for compressible gas
dynamics.

In the front tracking method, the propagation of the solution to the next
time step is divided into two main parts: the propagation of the tracked
wave structures (front propagation) and the updating of the state values
at locations away from the tracked front (interior propagation). Since
the solution of the front tracking is divided into two parts, two different
type of grid should be constructed. These two grids consist of a standard
rectangular finite difference grid for interior solutions and a mobile lower
dimensional grid for the tracked fronts.

The state values of all interior points are computed by using common
shock capturing schemes such as the Lax-Wendroff method with artificial
viscosity or the MUSCL scheme {22].

The front propagation is the algorithm to propagate marked points on
the tracked fronts. For each front the operator is split into the normal
and tangential sweeps over its points. At first, the point propagation
algorithm is constructed using solutions to Riemann problems. A Riemann
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problem for an one-space-dimensional system is an initial value problem
with piecewise constant initial data and a single jump discontinuity. We
first solve the equation given by the component of Eqs. (16)-(19) in the
normal direction of the tracked front with two states on either side of
the traced wave for initial data of a Riemann problem. The solution
to this Riemann problem provides both the (predicted) wave speed in
the normal direction of the traced wave, and a pair of (predicted) time-
updated states on the curve. The state values obtained by the Riemann
problem solutions are corrected by the method of the characteristics and
the Rankine-Hugoniot conditions. The tangential components of the state
at the front can be obtained by solving an initial value problem of the
corresponding tangential components of Eq. (16)-(19).

An intersection of two or more curves of an interface is defined as a
node. The evolution of nodes are determined by the solution of a two-
dimensional Riemann problem. Various node types have been classified
and their propagation algorithms have been implemented by using shock
polar analysis [18].

The front tracking simulation for the evolution of the initial single mode
of the RM instability was studied by Holmes et al. [6]. However, The sim-
ulation for initial multi-frequency modes of the RM unstable interface by
the front tracking method is more difficult than the one for single mode
case, since it involves the interactions of tracked waves. These interac-
tions include the tangling of tracked waves, the collision of nodes, and the
bifurcation of a single node.

Tangling occurs when two or more wave intersect after propagation.
Wave tangles are classified according to the type of the intersecting waves.
Standard types of wave tangles are boundary tangle, contact discontinu-
ity tangle, and shock-contact discontinuity tangle. Node interactions are
detected if the node propagation algorithm fails due to the blocking of a
node by nearby nodes. Node interactions include the crossing of a wave
around a corner, the crossing of a node through a periodic boundary, and
collision of two nodes. A node bifurcation is a node interaction where a
single node breaks up into a more complex configuration. Each type of
wave interactions requires a specialized propagation algorithm. We refer
to [20] for the details of wave interactions and the algorithms.

We have checked that turning off tracking and using shock capturing,
to avoid the computations of complicated wave interactions, lead to a
dramatic reduction in resolution of the computation around the interacting
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FIGURE 5. The interface evolution for a two bubble sim-
ulation. At ¢ = 0, the radii of the bubble in the middle
to the bubble in the wall are same and the heights are in
the ratio 0.88:1. The vertical wall is a periodic boundary.
The shock of Mach number 1.2 incidents from light to heavy
fluid. The nondimensional time is defined as k7o Myt. Here
To is the speed of sound ahead of the incident shock, and
M, is the Mach number of the incident shock.

waves. Therefdre, the tracking for the wave interactions must be taken
for the high resolution of the computation.

4. Numerical Results

After the incident shock collides with the contact interface, the trans-
mitted shock and the reflected shock move fast in opposite directions.
Since the effect of the the transmitted shock and the reflected shock should
be considered and the mode interactions of the RM instability occurs at
late times, the numerical simulation requires a long computational do-
main. This fact drastically increases the computation cost.

Figure 5 shows the result of the front tracking simulation for the two
bubble interactions of the RM instability. The radii of the small bubble
to the large bubble are same and the heights are in the ratio 0.88:1. The
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FIGURE 6. The plot of bubble heights versus time for the
simulation of two bubble interactions.

vertical wall is a periodic boundary. The density ratio of two fluids is
1:5, and the adiabatic exponents are y; = 1.4 for the upper fluid and
v = 1.094 for the lower fluid. The compressible interface is accelerated
by a weak shock of Mach number 1.2 moving downward. The reflected
wave is a shock.

The computational domain is 27 x 807 in a nondimensional unit. The
time t and length z are nondimensionalized by kToMyt and kz, respec-
tively. Here 7 is the speed of sound ahead of the incident shock and M,
is the Mach number of the incident shock. The interface actually moves
downward after the collision with the incident shock. Here, to reduce the
computation cost, we deduct the velocity fields by the velocity jump after
the incident shock passage. Fig. 5 is a partial view around the contact
interface, not a whole computational domain. Fig. 5 shows that the bub-
ble interactions, the advanced bubble grows faster than behind bubble
and expands, and the behind bubble is pushed back and shrinks, do occur
in the RM instability in compressible fluids. Fig. 5 also shows that the
interface have two spikes and the vortex structures due to discontinuity
of tangential velocities at the spikes are formed around ¢ ~ 90, the time
when the smaller bubble begins to be pushed back.
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In Figure 6, we plot the bubble tip locations for the Fig 5. Fig. 6 shows
that the initially advanced bubble grows faster than the other, while the
behind bubble initially moves forward, but grows slower than the front
bubble, and is pushed back finally. This result agrees with the theoretical
predictions of the potential flow model in Section 2. The agreement be-
tween the results of the potential flow model and the numerical simulation
indicates that the evolution of bubbles may not be affected by the maotion
of spikes.

5. Conclusions

In this paper the potential low model in which bubbles are described
by point sources are applied to study the bubble interactions of the RM
unstable interface in incompressible fluids of an infinite density ratio and
are validated by the full numerical simulation of the the RM instabil-
ity in compressible fluids for initial multi-frequency perturbations on the
interface.

The poteatial low model predicts the behavior of a single bubble of
decaying growth rate and an asymptotic constant radius, and the bubble
interaction process of the RM instability. It is found that, in the bubkle
interaction, a larger bubble finally attains the asymptotic velocity and as-
ymptotic radius of a single bubble. The numerical simulation, using the
front tracking method, is in & good agreement with the result of the po-
tential flow model, and it shows that the potential flow model gives a good
qualitative description for the bubble interaction of the RM instability.

The numerical simulation of the RM instability for the case of the
randomly perturbed interface and a comparison with the multiple bubble
interactions of the potential flow model will be interesting for practical
fusion problems and will be the next step of the research.
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