• 제목/요약/키워드: front propagation rate

검색결과 29건 처리시간 0.026초

FRONT PROPAGATION RATE OF DENSITY CURRENTS: DENSIMETRIC FROUDE NUMBER VERSUS DIMENSIONLESS FRONT VELOCITY

  • Choi, Sung-Uk
    • Water Engineering Research
    • /
    • 제3권1호
    • /
    • pp.9-22
    • /
    • 2002
  • In general, two dimensionless numbers are used in predicting the front propagation rate of density currents: the densimetric Froude number and the dimensionless front velocity. The former expresses the front speed in terms of the characteristic length and reduced gravitational acceleration. Previous papers report that the range of this dimensionless number is wide. The other is the dimensionless front velocity, which is a function of the buoyancy flux per unit width. This paper presents the state of the art review of the dimensionless numbers for the front propagation rate of density currents. Values of the densimetric Froude number are found to be consistent when the proper characteristic length is used for normalization. Then, the densimetric Froude number and the dimensionless front velocity are compared by using the experimental data of density currents over a horizontal surface.

  • PDF

미소원공결함을 갖는 자동차 전류구동축재의 온도변화에 따른 피로크랙전파거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior in F.F. Shaft Materials of Vehicle with Small Circular Defect at Variable Temperature)

  • 이상열;이동길;정재강
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.185-194
    • /
    • 1998
  • In this study, the rotary bending fatigue test was carried out with two kinds of material, S43C and S50C, using in the Front engine and Front drive wheels(F.F.) of vehicle. The one part of specimens was heated by high frequency induction method(about 1mm depth and $H_RC$ 56~60) and tested environment temperature were $-30^{\circ}C$, $+25^{\circ}C$ and $+80^{\circ}C$ in order to look over the influence of the heat treatment and the temperatures. In the experimented result at $+25^{\circ}C$ and $+80^{\circ}C$, the fatigue life of non-heated specimens were decreased about 35%, but that of heated specimens were decreased about only 5% at $+80^{\circ}C$ more than at $25^{\circ}C$. And in the experiment result at $-30^{\circ}C$ and $+25^{\circ}C$, the non-heated and heated specimens were about 110%, 120% higher fatigue life at $-30^{\circ}C$ than at the $+25^{\circ}C$ each other. On the other hand, the fatigue crack propagation rate of S50C was higher than that of S43C.

  • PDF

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

불꽃점화 구형분무화염에서 고공간 분해능을 가진 집광프로브의 응용 (Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames)

  • 양영준
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.20-25
    • /
    • 2004
  • In order to obtain the flame Propagation speed in freely falling droplet suspension Produced by an ultrasonic atomizer, a light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames. Two MICRO probes are used to monitor time-series signals of OH chemilumine-scence from two different locations in the flame. The flame propagation speed is calculated by detecting the arrival time difference of the propagating flame front. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the MICRO system. Furthermore, relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with k different experimental conditions by changing the fuel injection rate. It was confirmed that the MICRO probe system was very useful and convenient to obtain the flame propagation speed and that the flame propagation speed was different depending on the spray properties.

Instability of Magnetized Ionization Fronts

  • Kim, Woong-Tae;Kim, Jeong-Gyu
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and instability of a plane-parallel D-type IF threaded by magnetic fields parallel to the front. We find that magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor, defined as the density ratio of neutral to ionized phases. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when ${\beta}$ < 1.5, with ${\beta}$ denoting the square of the ratio of the sound speed to the Alfven speed in the pre-IF region. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable. We discuss potential effects of IF instability on the evolution and dynamics of IFs in the interstellar medium.

  • PDF

Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사 (Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

부상화염에서 화염전파속도와 스칼라소산율의 상호 관계에 관한 연구 (A Study of Correlation between Flame Propagation Velocity and Scalar Dissipation Rate for a Liftoff Flame)

  • 하지수;김태권
    • 한국가스학회지
    • /
    • 제13권3호
    • /
    • pp.33-42
    • /
    • 2009
  • 부상화염에 대한 연소반응 유동 수치해석을 수행하여 부상높이에 대한 기존 연구 결과들과 비교를 통하여 수치해석 결과의 신뢰성을 검정하였다. 화염전파속도를 결정하는 유동방향변환점을 기존의 연구에서처럼 연료분출속도에 상관없이 일률적인 위치로 선정할 경우 많은 오차를 유발하기 때문에 본 연구에서는 부상화염에서 이론당량비선을 따라 유동속도와 스칼라 소산율 특성을 살펴보았고 화염전파속도를 선정하는 유동방향변환점을 타당하게 선정하는 방법을 정립하였다. 이를 토대로 화염전파속도와 스칼라소산율의 관계식을 도출하여 부상화염에서 화염전파속도 특성을 규명하였다.

  • PDF

고온 강판의 분무냉각에 있어서 MHF 점에 관한 연구 (Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.175-180
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about $900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the experimental results show that the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구 (The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect)

  • 정의헌;권세진
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

고온 평판의 분무냉각에 있어서 MHF점에 관한 연구 (Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate)

  • 김영찬
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.974-981
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about$ 900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF