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FRONT PROPAGATION RATE OF DENSITY
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Abstract: In general, two dimensionless numbers are used in predicting the front propagation rate of density cur-

rents: the densimetric Froude number and the dimensionless front velocity. The former expresses the front speed in

terms of the characteristic length and reduced gravitational acceleration. Previous papers report that the range of this

dimensionless number is wide. The other is the dimensionless front velocity, which is a function of the buoyancy

flux per unit width. This paper presents the state of the art review of the dimensionless numbers for the front propa-

gation rate of density currents. Values of the densimetric Froude number are found to be consistent when the proper

characteristic length is used for normalization. Then, the densimetric Froude number and the dimensionless front

velocity are compared by using the experimental data of density currents over a horizontal surface.
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1. INTRODUCTION

A density current is a stratified flow caused
by density differences between fluids. The mo-
tion of a density current arises from the reduced
gravitational acceleration associated with posi-
tive or negative buoyancy, which comes from
density differences due to dissolved chemicals,
suspended materials, or temperature gradients.
For this reason, the density current is also
known as the gravity current (Simpson, 1982).

Density currents frequently occur in both
natural and man-made environments. The book
by Simpson (1987) provides an excellent collec-
tion of examples. In natural situations, stream
intrusions into reservoirs or lakes are important

examples of such flows. Turbidity currents,
sediment-laden underflows, are known to be the
architects of many submarine canyons in the
oceans. Other examples include thunderstorm
outflows in the atmosphere and snow avalanches
Density currents in man-made situations are the
ones by water jet injection and hydrostatic jet,
which are generated on purpose to dredge the
bed and to prevent sediment deposition, respec-
tively. Density currents can also be used in the
disposal of mine tailings (Normark and Dickson,
1976) and CO, gas (Drange ef al., 1993). Fluid
flows of a different density become important as
concerns on the environment increase.

Density currents can be divided into two
types depending on the inflow condition, i.e.,
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the continuous current and the discontinuous
current. The former can be seen as a plume fol-
lowed by a continuous flow, while the latter is a
cloud generated by a finite volume from a
source. The continuous density current takes
place when a certain rate of denser fluid is dis-
charged into a still ambient water, where it
propagates downstream. An example is a plume
produced by a sediment- laden river entering a
lake. The buoyancy flux of the plume may be
constant (density plume) or vary with the dis-
tance from the source of the flow (suspension
plume). On the other hand, the discontinuous
turbidity current is generated when a certain
amount of denser fluid is discharged into water.
The current is fed by a finite amount of dense
fluid as an instantaneous source. An example of
the discontinuous current is a cloud arising from
a single slump such as powder snow avalanches.
The buoyancy flux of density clouds is constant,
while that of suspension cloud is varying with
the distance from the source of the flow.

The density current shows two distinct flow
regimes: one is a jet behavior close to the inlet
where the inertia force is stronger than the
buoyancy force. The other is a plume behavior
far from the inlet. Therein the buoyancy is the
only force which makes the current flow in the
downstream direction. This is reflected in the
travel distance versus time curve. That is, for the
density current propagating on a slope, the curve
consists of two parts generally: an initial
non-linear part followed by a linear part. That is,
the density current propagates in the longitudi-
nal direction quite rapidly at the initial stage
when the momentum dominates, and then it
propagates at an almost constant rate after the
balance between the buoyancy and the resis-
tance force is attained.

In the practical point of view, one of impor-
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tant aspects in density current studies is the de-
termination of the front propagation rate under
different inlet conditions. This is why many
previous efforts were devoted to obtaining the
front propagation rate through analytical or ex-
perimental approaches. The front propagation
rates are generally expressed in terms of flow
variables at the inlet such as height, flow rate,
and buoyancy flux, which constitute dimen-
sionless parameters like the densimetric Froude
number and the dimensionless front velocity. If

we assume that the densimetric Froude number
(Fr,) Is constant, then the front velocity (y f) is

given in terms of the current thickness (4) and
the reduced gravitational acceleration (g”), i. e.,
u, =Fr,(g' h)!?. Alternatively, the dimension-

less front velocity (Z), defined by the front

velocity divided by the buoyancy flux per unit
width ( B, ), can be used. Britter and Linden
(1980) showed experimentally and theoretically
that the dimensionless front velocity is nearly
constant. By using this, the front velocity is ex

pressed as f:Z(B ) These relationships

can be directly applied to density current routing
such as in Alavian and Ostrowski (1992), or
they can be used as the front boundary condi-
tions in the numerical computation (Bonnecaze
et al., 1993). However, one may be confused to
find that these dimensionless numbers vary in a
very wide range. For example, Droegmeier and
Wilhelmson (1987) listed a table of the den-
simetric Froude numbers ranging between 0.7
and 1.4. This is thought to come from inconsis-
tent use of characteristic scales, which motivates
the current study.

The objectives of the present paper are to re-
view various relationships for the front propaga-
tion rate of density currents and to establish a

consistency in the data in the literature. Then, a
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better approach between the densimetric Froude
number and the dimensionless front velocity
will be proposed.

2. DENSIMETRIC FROUDE NUMBER

The relationship describing the front propaga-
tion rate of the density current has been sought
in terms of its characteristic length and the re-
duced gravitational acceleration. The length
scale can be either head or body height. This
relationship, a constant value of the densimetric
Froude number, was first referred to as “the spe-
cific law of saline fronts” by Keulegan (1957).
Herein, two different densimetric Froude num-
bers are defined, i.c.,

Fr,=
Y, =
I g'h 1)
u
Fry = —=
vy 2

which use the current (or body) height (%) be-
hind the front and the front height (4, as their
characteristic lengths, respectively.
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2.1 Theoretical Studies

Von Karman (1940) applied Bernoulli’s theo-
rem to two points along the interface of the two
fluids, i.e., one is the stagnation point at the tip
of the current and the other is a point at the in-
terface far downstream. It is assumed that the
front intersects the bottom boundary at an angle
of 60° as shown in Fig 1. Von Karman obtained
the front propagation rate (u;) of a density cur-

rent as
u, =~2g'h 3

which is identical to Fr, =J§ . However, this

relationship comes from an unreasonable analy-
sis because von Karman applied Bernoulli’s
theorem along the interface, an invalid proce-
dure in a dissipating, rotational flow. In fact, the
foremost part of the front consists of a compli-
cated shifting pattern of lobes and clefts, within
an intermittent series of billows. Later, however,
the above result happened to coincide with the
result from a different approach by Benjamin
(1968).

Benjamin (1968) realized the mistake in von
Karman’s (1940) analysis, and applied the

— sy,

Fig 1. Density Current Creeping on a Horizontal Surface (Von Karman, 1940)
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flow-force balance relationship to an energy-
conserving cavity flow. He expressed the den-
simetric Froude number for a propagating grav-
ity current as

_ [C=ne=n
e @

where 77 is a fractional depth (=4/H), and H

denotes the total depth. Fig. 2 shows the den-
simetric Froude number F7; by eq. (4) as a func-
tion of 77 for energy-conserving density flows.
In the figure, the densimetric Froude number
(Fr;)is 1742 for a density current in a shallow
ambient layer of ;=1/2. In this case, Benjamin
(1968) proved analytically that a uniform grav-
ity current progresses steadily without losing
energy. For a density current flowing in a deep
ambient fluid (7= 0), Benjamin (1968) showed
that the densimetric Froude number (Fr;) be-
comes .2 , which is exactly the same as the value
obtained by von Karman, eq. (3). Considering a
nose lifting of 0.354, from the bottom due to the
friction, which is from the universal shape for
the density current head in Middleton (1966),
Fr;=1.14 is obtained for a deep density current.

Kao (1977) derived the front propagation rate
of density currents in generalized situations of a
stratified inflow into a stratified ambient fluid. If
p(z) and £.(2) denote the densities of the den-
se and ambient fluids, respectively, then the
propagation rate of the density current is given by

u, = 222 gh v (B, - prah’ ®)
P

0

where py = p/0), 4p = p(0) - po, o = -lpo
(dp,/dz), and B=-1/py (dp/dz). It is obvious that
the densimetric Froude number (Fr;) from the
above formula becomes+/2 if both of the den-
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sity gradients, g and p, become zero. Vari-

ous relationships can be generated from eq. (5).
For example, the propagation rate of a stratified
density current in an unstratified ambient fluid
(B,=0,B=0) or the propagation rate of an

unstratified density current in a stratified ambi-
ent fluid (g, #0, g=0) can be obtained.

Hay (1983) extended the theoretical analysis
by Benjamin (1968) to a density current on an
inclined bottom and obtained the following ex-
pression for the front velocity:

u, = \Jg'h, (Fr, + ]f—xSma) (6)
f

where L, is the distance from the nose to the

point in the dense layer at which the pressure
becomes hydrostatic, and & is the channel slope
angle. Eq. (6) describes the front propagation
rate of the density current in terms of the chan-
nel slope, and it recovers Benjamin’s result if
the channel slope becomes zero. However, the
use of eq. (6) is limited by the unknown pa-
rameter L, a flow property which can hardly be
determined. The above formula is, in any case,
not applicable for steep slopes larger than 5° to
10° because water entrainment is not con-
sidered.

Buhler et al. (1991) modified Benjamin’s
(1968) relationship by incorporating non- uni-
form velocity distribution into the derivation.
Bubhler et al.’s densimetric Froude number for
the density current advancing over a flat sur-

face is given by

Fr, = (1-m(2-n) (7)
(28, -1+n

where B, is a modified momentum correction

factor of the intruding layer. Buhler et al. (1991)
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obtained good agreement between the above
relationship and the experimental results by
Britter and Simpson (1978) and Simpson and

Britter (1979) with B, =1.35.

It should be emphasized in the analytical
analyses given above, severe mixing between
the two fluids at the front has been ignored. Also
not included is the situation in which the fluid in
front of the density current is overrun by the
density current and then mixed within it. That is,
the theoretical solutions resulted from severe
simplifications of the complicated dynamics at
the head.

2.2 Experimental Studies

Front propagation rates of density currents
were investigated experimentally by Keulegan
(1957 and 1958). Lock exchange saline currents
(Keulegan, 1957) and saline water intrusions
from a tideless sea into a channel (Keulegan,
1958) were generated in a horizontal flume by
opening a lock or a barrier containing saline
dense fluids. In both cases, Keulegan found that
the propagation rate is related with the height of
the head and the reduced gravitational accelera-
tion. In the study of the lock exchange currents,
he obtained expressions for the densimetric
Froude number. This value can be expressed as
a function of the front Reynolds number Re, (=

uhy/v):

u
F’E — gl
r

:0123Relf’4 fOI' Ref < 860 (8)
gh/

P = —g74 Tor Re >80 ()

\lgh/

Similar relationships for underflows resulting
from the intrusion of sea water into a channel
were also found:
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Fr, = u, —0.113Relf/4 for Re/<1200 (10)

v&'h, -

=0.705

Fry =4 for Re, >1200 (11)

gh/

Keulegan (1957 and 1958) observed that the
initial %, is approximately equal to half of the
total flume depth (H), and the average value of
hyis about 2.16A.

The experiments by Middleton (1966) were
performed by generating density currents in a
tilted flume (S £ 4%) and turbidity currents in a
horizontal flume by releasing a constant dis-
charge of denser fluid. He verified that the den-
simetric Froude number is nearly constant, i.e.,
Fr, = 0.75, but may increase slightly with an
increase in slope. Similar characteristics be-
tween turbidity currents and saline density cur-
rents were found. Lower noses, however, were
found in the turbidity currents.

Kersey and Hsu (1976) reproduced Keule-
gan’s experiments for conservative currents not
only in a horizontal flume but also in flumes
with positive and negative slopes. They found
that appreciable frictional energy dissipation
occurs while the current propagates downstream.
They obtained constant values of coefficients in
the following relationships :

u, =K, Jg'h, (12)
u, =K, Jg'H (13)
u, =K, \Jg'(H—h,) (14

In egs. (12)-(14), K,, K;, and K, denote the den-
simetric Froude numbers associated with dif-
ferent characteristic lengths. Kersey and Hsu
estimated constants with the help of the frontal
speed by Yih (1965) such as
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Table 1. Froude Numbers with Different Length Scales (Kersey & Hsu, 1976)

i hH ; T W
horizontal 0.71 0.41 0.45 0.41 0.59 0.41

+ slope 0.64 0.53 0.46 0.53 0.67 0.53

- slope 0.54 0.53 0.39 0.53 0.57 0.53

Table 2. Densimetric Froude Numbers
(a) Cloud Type Density Currents

Author(s) ‘ mb ~ . ;
Keulegan (1958) Frp=0.71 Lab. Exp. 0 <229°
Daly & Pracht (1968) £ry=0.70 Num. Exp. horizontal
Kersey & Hsu (1976) Fry=0.71 Lab. Exp. horizontal
Huppert & Simpson (1980) Fry=1.19 Lab. Exp. horizontal

(b) Plume Type Density or Turbidity Currents

Author(s) Dens. Froude Number slope
Middleton (1966) Fry=0.75 horizontal
Buhler et al. (1991) Fry=1.08 Theoretical horizontal
Altinakar (1992) Fry=0.63 Lab. Exp. 0<2.07°
1.5
2
1.01
Fr,
7
2
0' T T T T
0.0 0.1 0.2 0.3 0.4 0.5

n

Fig. 2. Densimetric Head Froude Number vs. Fractional Depth (Benjamin, 1968)
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u/ — pZ _pl g(H_h/) (15)
dpz*‘pl

where p, and p, denote the density of lighter

and heavier fluids, respectively. Kersey and
Hsu found that K; = K, = 1/42 and K;=0.5
when #/H = 0.5. Their experimental results are
summarized in Table 1, where good agreement
is seen between the theoretical and the measured
results. The differences may be explained by the
fact that friction and dissipation were ignored
during the conversion of potential energy into
kinetic energy. Kersey and Hsu (1976) con-
cluded that Keulegan’s constants in egs. (8)-(11)
are not truly constant, but varies depending upon
the magnitude of the frictional energy loss, the
channel slope, and the value of i/H.

Huppert and Simpson (1980) proposed a rela-
tionship describing the motion of a density
cloud as a function of fractional depth, 77,
based on the experimental observations in
Simpson and Britter (1979). They proposed that
the densimetric Froude number be given by

Fri=u,/ [g'h =119 for 70075 (16)

Fri=u,/\Jgh= 05y foroo7s<p<1  (17)

A fractional depth, 77, larger than 0.075 cau-

ses the density current to propagate less rapidly
until 77= 0.075, at which point the motion of
the density current is no longer controlled by the
fractional depth. For the density current in a
deep ambient fluid, the turbulent mixing at the
head obviously retards the motion as much as
the difference between 1.19 from eq. (16) and
V2 fromeq. (4).

In a recent experimental study about weakly
depositing turbidity currents, Altinakar et al.
(1990) obtained a densimetric Froude number
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Fr,=0.63, which is slightly smaller than Froude
number for saline currents. This may be due to
the loss of buoyancy flux in turbidity currents,
i.e., deposition of suspended sediment. They
also found that the dimensionless front velocity
of a density current is larger than that of a tur-
bidity current with fine sediments, which, in
turn, is larger than that of a turbidity current
with coarser sediments. The fact that a certain
amount of energy has to be spent by the flow to
keep the sediment suspended, might explain that
a current carrying sediment propagates more
slowly.

2.3 Summary

Table 2 summarizes values of densimetric
Froude number of density or turbidity currents
in the literature. Table 2(a) and (b) list the den-
simetric Froude numbers of cloud type and
plume type density currents, respectively. In
Table 2(a), a value from numerical model by
Daly and Pracht (1968) is given, and the value
by Buhler et al. (1991) in Table 2(b) comes from
eq. (5) with n=0and 4, = 1.35.

Recalling that the front height is about twice
the current height, the values of the densimetric
Froude number are seen to be fairly consistent.
They are even consistent regardless of the type
of the currents. That is, the values for density
clouds are similar to those for density plumes,
and they are close to the mean value from Ben-
jamin’s theoretical analysis (Fr, = 0.75), which
is valid for either cloud or plume type density
currents. The impacts of slope and ambicnt wa-
ter depth do not appear clearly in the values.
Note that the considerations of nose lifting
(Benjamin, 1968) and non-uniformity of veloc-
ity profile (Buhler ef al., 1991) result in Fr, =
1.14 and Fr; = 1.08, respectively, being similar
to the value from experiments. Accounting for
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the energy loss at the front or water entrainment
will lead to the same result. The value by Alti-
nakar et al. (1992) is observed to be smaller than
others due to the settling effect of suspended
particles in turbidity currents.

3. DIMENSIONLESS FRONT VELOCITY

The densimetric Froude number describes the
propagation rate of density current in terms of
the reduced gravitational acceleration and an
appropriate length scale such as head or body
héight. The use of densimetric Froude number
implicitly assumes that the product of the char-
acteristic length and reduced gravity does not
change significantly. In other words, ambient
water is not entrained into the density current
seriously such as the case of cavity flows con-
sidered by Benjamin (1968). Whereas the di-
mensionless front velocity expresses the propa-
gation rate by using the buoyancy flux per unit
width. For buoyancy-conserving density cur-
rents, the buoyancy flux is conserved regardless
of mixing with ambient water.

Dimensional analysis by Britter and Linden
(1980) led to the following simple relationship:

u, =(g'q)" f(6,Re) (18)

for the front velocity after steady motion of a
conservative current has been achieved. In eq.
(18), g is the discharge per unit width of dense
fluid, and g’q (= Bf) is the buoyancy flux per
unit width, which is constant for conservative
density currents. For turbulent flows with a suf-
ficiently large Reynolds number, the above
equation can be written as

u, =B’ f(0) (19)
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Britter and Linden (1980) showed experimen-
tally and analytically that the advancing velocity
of density flows is almost independent of the
slope 6. This is due to the fact that the gravita-
tional force increases as the slope increases from
zero. However, as the slope increases, there is
also an increase in water entrainment into the
current, which seems to decelerate the body of
the current. Based on experimental observations,
Britter and Linden (1980) suggested that the
dimensionless front velocity i, is a constant for
a wide range of slopes such as

i =u, /B =15+02 5°<0<90°  (20)

Over this range of slopes, the buoyancy force of
the current is large compared with the frictional
force, and therefore guarantees the steady mo-
tion of the current. Analytically, they expressed
the dimensionless front velocity as

. A -2/3
;:S:/z(cose+ asing J( sin@ j (21)

a 2(e, +c, \e, +cp

where S; is a profile constant, and a is the ratio
of the speed at the level of the nose to the mean
speed of the following flow. Experimental data
together with eq. (21) are plotted as a function
of channel slope in Fig. 3. Therein, values of a
=12,8, =075, and e, = 6/1000 are used for

the computation of the curve with 4 in degrees.
It is seen that at high slopes the effect of the bed
resistance coefficient, ¢p, is negligible because
most of the retardation of the current is caused
by the water entrainment, whereas the effect of
the bed resistance coefficient is noticeable at
small slopes.
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Fig. 3. Dimensionless Head Velocity versus Channel Slope (Britter & Linden, 1980)
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Fig. 4. Head Velocity vs. Initial Buoyancy Flux (Choi & Garcia, 1995)
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densimetric Froude Number

dimensionless front velocity
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Choi and Garcia (1995) plotted buoyancy flux
versus front velocity, which are obtained from
laboratory observations as well as numerical
computations over slope ranges, 0< .S <0.0362.
The plot is given in Fig. 4. They showed that a
constant value of the dimensionless front veloc-
ity might still exist for slopes smaller than 5°,
however, this constant value is close to unity
rather than 1.5.

4. DENSIMETRIC FROUDE NUMBER
VS. DIMENSIONLESS FRONT VELO-
CITY

In this section, two approaches in estimating
the front propagation rate, namely the densimet-
ric Froude numbers and dimensionless front
velocities, are compared by using the experi-
mental data from Buhler et al. (1991) and Par-
sons and Garcia (1995). Both experiments were
carried out on a horizontal surface with conser-
vative density currents. The case of density cur-
rents on an inclined surface is not included in
this study due to the lack of available data. In
Buhler et al.’s (1991) experiments, only the case
of static ambient layer is considered. In the ex-
periments by Parsons and Garcia (1995), the
front of density currents was freezed with the
help of conveyor belt installed at the channel
bottom. In this case, the volume flux of the den-
sity current from the inlet is the mixing rate, so
that the total volume flux is adjusted by adding
the mixing rate.

The densimetric Froude number (Fr;) versus
fractional depth is plotted in Fig. 5. The curve
from the regression of the data is also shown in
the figure. Mean values of the densimetric
Froude number from Buhler er al’s (1991),
Parsons and Garcia’s (1995) with Re < 1000,
and Parsons and Garcia’s (1995) with Re > 1000
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are 0.63, 1.33, and 1.36, respectively. Froude
numbers by Buhler et al.’s (1991) data are due
to larger fractional depth, which clearly tends to
retard the front propagation.

Fig. 6 presents the dimensionless front veloc-
ity (i) versus fractional depth. Mean values of
the dimensionless front velocities from Buhler et
al.’s (1991), Parsons and Garcia’s (1995) with
Re < 1000, and Parsons and Garcia’s (1995)
with Re > 1000 are 0.84, 1.12, and 1.08, respec-
tively. As in Fig. 5, it is seen that the dimen-
sionless front velocity gradually decreases as the
fractional density increases. The figure suggests
that the dimensionless front velocity for density
currents propagating over a flat bottom in deep
ambient water is about unity for the fractional
depth greater than 0.1. Also, it is seen that the
data in Figure 5 are more scattered than those in
Figure 6. This indicates that the dimensionless
front velocity is more appropriate in predicting
the front propagation of the density current over
a horizontal surface rather than the densimetric
Froude number.

5. CONCLUSIONS

This paper provided a literature survey of the
dimensionless numbers for the front propagation
rate of density currents. The densimetric Froude
number is the front velocity normalized by the
reduced gravity and characteristic length. The
dimensionless front velocity is the front velocity
divided by the cubic root of the buoyancy flux
per unit width. A clarification of the characteris-
tic length showed that the values of the den-
simetric Froude number are consistent. It was
also shown that they do not change significantly
depending upon the type of density currents.
The dimensionless Froude numbers are found to
be about Fr; = 1.1 and Fr, = 0.7 when the cur-
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rent and body heights are used for characteristic
length, respectively. The densimetric Froude
number of Fr; = 1.1 is smaller than the theoreti-
cal value by Benjamin’s (1968) analysis due to
severe mixing and energy loss.

Using experimental data available in the lit-
erature, the densimetric Froude number and the
dimensionless front velocity of density currents
are estimated. The data were obtained from the
laboratory experiments in Buhler et al. (1991)
and Parsons and Garcia (1995), who generated
conservative saline currents over a horizontal
floor. Both dimensionless numbers are plotted
against fractional depth. They show a similar
behavior in that they decrease as fractional
depth increases due to the dynamic effect of the
overlying layer. It was found that the values of
the densimetric Froude number deviate more
from the mean than the values of dimensionless
front velocity. This indicates that the dimen-
sionless front velocity provides a better tool in
describing the propagation rate of the density
current rather than the densimetric Froude
number. Study of the density currents on the
inclined surface is remained for further experi-
mental research.
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