• Title/Summary/Keyword: frictional wear

Search Result 218, Processing Time 0.028 seconds

Synthesis of Nanosized Cu/Zn Particles in the Base Oil Phase by Hydrothermal Method and Their Abrasion Resistance (기유 내에서 수열합성법에 의한 나노크기의 구리/아연 입자 합성 및 윤활 특성)

  • Kim, Young-Seok;Lee, Ju-Dong;Lee, Man-Sig
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • Stable metallic Cu/Zn nanoparticles were prepared in the base oil phase by hydrothermal method. The physical properties, such as crystal structure, crystallite size and crystallinity according to synthesis conditions have been investigated by XRD, FT-IR and TEM. In addition, 4-ball test has been performed in order to investigate the frictional wear properties of prepared nanosized Cu/Zn particles. The peaks of the X-ray diffraction pattern indicate that the particle size was very small and crystallinity of Cu/Zn particles was good. The micrographs of TEM showed that nanosized Cu/Zn particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the Cu/Zn particles synthesized in base oils was 23-30 nm. It was found that the antiwear capacity increases with increasing Cu/Zn concentration. When the concentration of Cu/Zn was 5.0 wt%, the wear scar diameters was 0.38 mm.

Cutting Efficiency and Mechanical Characteristics of Diamond Micro-blades Containing WS2 Lubricant (WS2 윤활제를 첨가한 마이크로 다이아몬드 블레이드의 절삭성능과 기계적 특성)

  • Kim, Song-Hee;Jang, Jae-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • $WS_2$ powder was added to the Cu/Sn bond metal of diamond micro-blades for machining of semi-conductor and IC chips to improve cutting efficiency. The effect of $WS_2$ additive on cutting efficiency was investigated and compared with the micro-blades with $MoS_2$ developed in previous research. Flexural strength, frictional coefficient, and wear resistance of blades decreased with $WS_2$ but wear depth increased. It was found that the blades including $WS_2$ consumed less momentary energy than the blades containing $MoS_2$ during dicing test. Micro-blades containing $WS_2$ exhibited lower flexural strength than the blades with $MoS_2$ resulting from higher amount of sintering defects relevant to the less effectiveness of $WS_2$ on fluidity. The effect of $WS_2$ and $MoS_2$ on fluidity during sintering was analyzed in terms of mismatching degree between the longitudinal direction of lubricant particles and the perpendicular direction to the compact loading. The blade with 8.1 vol.% of $WS_2$ showed the best cutting efficiency.

Chemical Reactivity of N-Iodopyridinium Dichlorodate as a Lubricant Additive (潤滑添加劑로서의 N-Iodopyridinium Dichlorodate의 화학반응성)

  • Moon Tak Jin;Kwon Oh Seung
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 1975
  • Small amounts of iodine compound in mineral oils are usually effective in reducing friction of metallic surfaces. Such improvement in frictional behaviour of wear characteristics was explained by the formation of a diiodide layer lattice structure at the metallic contact surfaces. The lubrication mechanism, however, by which organoiodine compounds functions is not based on the formation of such lattice structure iodide. It was tested and shown, by a static surface chemical reactivity test, wear and EP tests, and a hot wire method, that compound such as N-iodopyridinium dichlorodate, a double charge transfer complex, reacted with metals as an interhalogen compound and that the resultant thin film product reduced appreciable the friction of metallic surfaces, more than compounds such as methyl iodide, diiodomethane, and iodoform. These results suggest that the action of iodine, included in organoiodine compounds, is not that of a classical layer structure iodide, and an entirely new mechanism may be derived from a further studies on charge transfer complex compounds of organoiodine compounds.

  • PDF

Tribological Properties of Carbon Layers Produced by High Temperature Chlorination in Comparison with DLC Coating (DLC 코팅과 비교된 고온 염소처리에 의한 탄소 막의 Tribological 특성)

  • Choi, Hyun-Ju;Bae, Heung-Taek;Na, Byung-Chul;Lee, Jeon-Kook;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.375-380
    • /
    • 2007
  • Tribological properties of carbon layers produced by high temperature chlorination of SiC ceramic and DLC (diamond-like carbon) coatings produced by ion plating method were investigated and compared. Carbon coatings were produced by exposure of ball and disc type SiC in chlorine and hydrogen gas mixtures at $1200^{\circ}C$. After treatment for 10 h, dense carbon films up to $180{\mu}m$ in thickness were formed. Tribological behavior of newly developed carbon films were compared with that of DLC films. Wear resistance and frictional coefficient of the surface modified ball and disc type SiC were significantly improved compared to an untreated SiC specimen, and also the modified carbon layer had better performance than DLC coatings. Therefore, in this study, the newly developed carbon films have several advantages over existing carbon coatings such as DLC coatings and showed superior tribological performances.

The Effect of Aluminum Element on the Surface Properties of CrAlN Coating Film Deposited via Arc Ion Plating ( Arc Ion Plating으로 증착된 CrAlN 코팅막의 표면 특성에 미치는 Al 원소의 영향 )

  • Jae-Un Kim;Byeong-Seok Lim;Young-Shin Yun;Byung-Woo Ahn;Han-Cheol Choe
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2024
  • For this study, CrAlN multilayer coatings were deposited on SKD61 substrates using a multi-arc ion plating technique. The structural characteristics of the CrAlN multilayer coatings were evaluated using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Additionally, the adhesion of the coatings was assessed through scratch testing, and the mechanical strength was evaluated using nanoindentation and tribometric tests for frictional properties. The results show that the CrAlN multilayer coatings possess a uniform and dense structure with excellent mechanical strength. Hardness measurements indicated that the CrAlN coatings have high hardness values, and both the coating adhesion and wear resistance were found to be improved compared to CrN. The addition of aluminum is anticipated to contribute to enhanced durability and wear resistance.

A Study on Wear Characteristics of Cutting Tools in a Titanium Roughing Cut Machining (티타늄 황삭가공에 있어서 절삭공구의 마모 특성에 관한 연구)

  • Bae, Myung-whan;Jung, Hwa;Park, Hyeong-yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2016
  • The application of titanium has been gradually rising because the utilizing ranges for low weight and high strength are rapidly increased by the need for improving the fuel economy in production industries such as the aviation and automotive in recent. The purpose in this study is to investigate the appropriate cutting conditions on the life of flat and round end mills by measuring the maximum cutting temperature relative to the machining time, and calculating the wear rates of cutting tool with the spindle speed and feed rate of vertical machining center as a parameter in the titanium roughing cut machining which is widely used in critical parts of aircraft, cars, etc. When the wetted roughing cut machining of titanium with a soluble cutting oil is conducted by the flat and round end mills, the maximum cutting temperatures for a variety of spindle speed and feed rate are measured at ten-minute intervals during 60 minutes by an infrared thermometer, and the wear rates of cutting tool are calculated by the weight ratios based on tool wear before and after the experiment. It is found that the maximum cutting temperature and the wear rates of cutting tool are raised as the cutting amount per tool edge is increased with the rise of feed rate, in this experimental range, and as the frictional area due to the rise of contacting friction numbers between tool and specimen is increased with the rises of cutting time and spindle speed. In addition, the increasing rate of maximum cutting temperature in the flat and round end mills are the highest for the cutting time from 50 to 60 minutes, and the wear rate of cutting tool in the flat end mill is 1.14 to 1.55 times higher than that in the round end mill for all experimental conditions.

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Han-Jong;Cho, Yong-Il;Cho, Sang-Won;Lee, Jae-Keun;Park, Min-Chan;Kim, Dae-Jin;Lee, Kwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

A Study on the Wearing Phenomenon Analysis of Pantograph Slider for the Subway Cars (전동차 판토그라프 주습판 마모 현상분석에 관한 연구)

  • Kim, Young-Gyu;Kwon, Seok-Jin;Won, Si-Tae;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.389-395
    • /
    • 2010
  • This paper is about the copper slider with high electric conductivity and resistance arc. A new copper slider which has enhanced resistance against frictional wear was developed. By alteration of its material components and manufacturing process, its material property has been enhanced. To verify its enhanced wear-resisting capacity, a laboratory test and a field test were carried out. As the laboratory test, a dynamo test was performed and its test result showed that the developed new copper slider had superior wear-resisting capacity to the currently used copper slider. The new one showed double durability of the current one and normal wearing characteristics. A filed test was performed on the Metro subway lines at service by Seoul Metro. The field test showed similar results to those from the laboratory test, which the d eveloped new copper slider has double superior durability and sound wearing patterns. Authors strongly believe that the replacement of the copper slider currently in use by the developed new one will contribute to the economic and efficient operation of the subway line system

Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer (화학기상증착법에 의하여 제조된 그래핀 성장층의 기계적 마모 특성)

  • Lee, Jong Hoon;Kim, Sun Hye;Cho, Doo Ho;Kim, Se Chang;Baek, Seung Guk;Lee, Jong Gu;Kang, Junmo;Choi, Jae-Boong;Seok, Chang Sung;Kim, Moon Ki;Koo, Ja Choon;Lim, Byeong Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2012
  • Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Ahn, Young-Chull;Lee, Jung-Eun;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Kim, Dong-Han;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with n mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear Lising nano-oil is evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oilenhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF