• Title/Summary/Keyword: frictional sliding behavior

Search Result 66, Processing Time 0.024 seconds

Tribological Behavior of Automotive Brake Pads with Different Sizes of zircon Particles (마찰재에 사용되는 지르콘($ZrSiO_4$) 입자의 크기에 따른 마찰특성)

  • Hong, Young-Suk;Ko, Kil-Ju;Park, Sang-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.204-210
    • /
    • 2002
  • Automotive brake pads with four different sizes of zircon particles (average sizes of 1㎛, 6㎛, 75㎛, and 140㎛, respectively) were investigated to evaluate the size effect of abrasive particles on friction performance. Results showed that the brake pads with the larger size of zircon particles tend to show better frictional stability and low pad wear. However, the rotor surface was severely abraded in the case of using larger zircon particles. On the other hand, the small zircon particles in the pads showed the fast increase of the coefficient of friction with friction force oscillation and the tendency was pronounced at low sliding speeds. The brake pads with small particle sizes also exhibited strong fade phenomena at elevated temperatures.

Development of an Electro-mechanical Driven Broaching Machine

  • Park, Hong-Seok;Park, In-Soo;Dang, Xuan-Phuong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • The machine tools builders are trying to improve the efficiency and performance of the machine tools. The electro-mechanical driven broaching machine has many advantages such as lower noisy operating, higher energy efficiency, and smaller space of installation. This paper presents the structural and mechanical development of an electro-mechanical driven broaching machine that is replaced for traditional hydraulic one. The servo motor, ball screw and roller linear guide are used instead of hydraulic cylinder and translation frictional sliding guides. The simulation method based on FEM was applied to analyze the stress, deformation of the machine for static analysis. The dynamic analysis was carried out for verifying and assessing the mechanical behavior of the developed broaching machine. This work helps broaching machine developer make a better product at the early design stage with lower cost and development time.

Friction Dynamics of Lip Seals

  • Wassink, D.A.;Lenss, V.G.;Levitt, J.A.;Ludema, K.C.;Samus, M.A.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.87-92
    • /
    • 1995
  • Lip seals, important components in many hydraulic devices, dissipate energy through friction, resulting in power loss. This study contributes to an understanding of lip seal friction by further exploring the connections between friction behavior, viscoelastic properties of robber and viscous properties of the lubricant. Experiments haven been conducted for short stroke oscillations, where these connections are quite strong. Sliding friction experiments at a variety of pressures, temperatures and oscillation rates (for different seal materials, surface roughnesses and lubricant viscosities) are examined. Speculative explanations are suggested for conditions under which friction maxima and frictional vibrations occur.

Numerical Study on Chaotic Dynamics of Repeated Impacts with Friction - Vibratory Bowl Feeders (마찰력이 개재된 반복충돌 혼돈 동역학의 수치해석적 연구 -진동보울피더)

  • Han, In-Hwan;Lee, Yun-Jae;Yoon, Koo-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.143-152
    • /
    • 1996
  • The vibratory bowl feeder is the most versatile of all hopper feeding devices for small engineering parts, and the typical nonlinear dynamic system experiencing repeated impacts with friction. We model and analyze the dynamic behavior of a single part on the vibrating track of the bowl feeder. While the previous studies are restricted to the sliding regime, we focus our analysis on the hopping regime where the high conveying rate is available. We present the numerical analysis results for conveying rate and frictional impact process both in periodic and chaotic regimes. We examined the dynamic effects from the variation of several physical parameters, and presented the important features for the design of the vibratory bowl feeder. This research holds much potential for leverage over design problems of wide range of mechanisms and tools with repeated collisions.

  • PDF

Interface Frictional Characteristics of Geotextile Container for the Restoration of Roadbed swept away by Rainfall (강우로 유실된 철도노반 보수용 토목섬유 콘테이너의 상호마찰 특성)

  • 황선근;최찬용;신은철;이명호
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.587-595
    • /
    • 2002
  • Geotextile containers for restoration of slopes form the interface between the containers during the restored to lost slopes, and therefore the relation displacements are developed including the sliding on the surface. Since, the shear strength on these interfaces is less than that of fill material in the container, the characteristics of shear strength on the interface governs the behavior of the restoration slopes. In general, a lot of natural properties of geotexiles is required to evaluate the safty of the geotextiles, Among the properties, the shear characteristics between geotextiles and soil is a important variable to assess the safety. From the results of full scale direct shear test, the residual shear strength is recommanded to use for design factors since a large deformation possibly occures on the geotextile containers.

  • PDF

Experimental and Numerical Analysis of A Novel Ceria Based Abrasive Slurry for Interlayer Dielectric Chemical Mechanical Planarization

  • Zhuanga, Yun;Borucki, Leonard;Philipossian, Ara;Dien, Eric;Ennahali, Mohamed;Michel, George;Laborie, Bernard;Zhuang, Yun;Keswani, Manish;Rosales-Yeomans, Daniel;Lee, Hyo-Sang;Philipossian, Ara
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.53-57
    • /
    • 2007
  • In this study, a novel slurry containing ceria as the abrasive particles was analyzed in terms of its frictional, thermal and kinetic attributes for interlayer dielectric (ILD) CMP application. The novel slurry was used to polish 200-mm blanket ILD wafers on an $IC1000_{TM}$ K-groove pad with in-situ conditioning. Polishing pressures ranged from 1 to 5 PSI and the sliding velocity ranged from 0.5 to 1.5 m/s. Shear force and pad temperature were measured in real time during the polishing process. The frictional analysis indicated that boundary lubrication was the dominant tribological mechanism. The measured average pad leading edge temperature increased from 26.4 to $38.4\;^{\circ}C$ with the increase in polishing power. The ILD removal rate also increased with the polishing power, ranging from 400 to 4000 A/min. The ILD removal rate deviated from Prestonian behavior at the highest $p{\times}V$ polishing condition and exhibited a strong correlation with the measured average pad leading edge temperature. A modified two-step Langmuir-Hinshelwood kinetic model was used to simulate the ILD removal rate. In this model, transient flash heating temperature is assumed to dominate the chemical reaction temperature. The model successfully captured the variable removal rate behavior at the highest $p{\times}V$ polishing condition and indicates that the polishing process was mechanical limited in the low $p{\times}V$ polishing region and became chemically and mechanically balanced with increasing polishing power.

Seismic Behavior of the Friction Pendulum System in Bridge Seismic Isolation (교량에 설치된 마찰 단진자 시스템의 지진하중에 의한 거동연구)

  • 오순택;김영석;김연택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 1998
  • This paper summarizes a study on the application of the friction pendulum system in bridge seismic isolation. Shaking table tests have been carried out on a model structure isolated with F.P.S and the obtained structural responses are compared to those of non-isolated. It can be concluded the F.P.S increases the earthquake resistance capacity of the isolated structure. It is also found that the stiffness of bearing, being controlled by the radius of curvature of the spherical sliding interface, is unaffected by the amplitude of the input excitation. Furthermore, the coefficient of sliding friction is velocity dependent so that in weak excitation the sliding velocity is low and, accordingly, the mobilized friction force is less than the one mobilized in strong excitation. Also, the frictional properties of the bearings remain markedly stable after extensive testing, and the permanent displacements are small and not cumulative in successive earthquakes.

  • PDF

Kaiser Effects in Thermo-Acoustic Emission Behavior of Composites (복합재료의 열-음향방출거동에 있어서의 카이저 효과)

  • 김영복;최낙삼
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.38-45
    • /
    • 2001
  • Kaiser effects of thermo-acoustic emission (AE) from composite laminates under the repetitive thermal cyclic loads have been quantitatively analyzed in consideration of AE source mechanisms. The repetitive thermal load brought about a large reduction. i.e. an exponential decrease in AE total ringdown counts and AE amplitudes. It was thought that generation of thermo-AE during the first thermal cycle was not caused by crack propagation but by secondary microfracturing due to abrasive contact between crack surfaces. For the repetitive thermal cycles, a few number of weak thermo-AE events were generated due to some frictional sliding contact. Such behavior of thermo-AE showed different characteristics according to specimen kinds and the maximum temperature in the thermal load cycles.

  • PDF

A Study on the Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) and Wonder Process Craft (WPC) Treatments on Tribological Properties of SUJ2 Bearing Steel (SUJ2 베어링 강의 트라이볼로지 특성에 대한 초음파나노표면개질 (UNSM) 및 원더프로세스크래프트 (WPC) 처리 효과 연구)

  • Amanov, A.;Karimbaev, R.;Cho, I.H.;Kim, E.J.
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.170-178
    • /
    • 2022
  • Mechanical surface treatment is an excellent approach widely used to modulate and improve the performance and service life of bearings, gears, and frictional joints. The main purpose of this study is to investigate and compare the effect of ultrasonic nanocrystal surface modification (UNSM) and wonder process craft (WPC) on the surface and tribological properties of SUJ2 bearing steel. The surface roughness and hardness of the untreated and treated (UNSM- and WPC-treated) specimens were measured and compared. Their tribological properties were evaluated using a micro-tribometer under grease-lubricated and dry conditions against itself. Surface hardness measurement results revealed that both the UNSM- and WPC-treated specimens had a higher hardness than that of the untreated specimen. The surface roughness of the untreated specimen was reduced after UNSM and WPC treatments. Abrasive wear mode was observed on the surface of the specimens worn under grease-lubricated conditions, while adhesive wear mode was found on the surface of the specimens worn in dry conditions. According to the tribological test results, the friction coefficient and wear rate of the untreated specimens were reduced by the application of both the UNSM and WPC treatments under grease-lubricated and dry conditions.

Molecular Simulation Study on Influence of Water Film Thickness on Lubrication Characteristics (물 분자막의 두께와 윤활특성의 상관관계에 대한 분자시뮬레이션 연구)

  • Kim, Hyun-Joon;Heo, Segon
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.199-204
    • /
    • 2022
  • This paper presents a numerical investigation of the influence of water molecule thickness on frictional behavior at the nanoscale using molecular dynamics simulation. Three different models, comprising water thin films of various thicknesses, were built, and indentation and sliding simulations were performed using the models. Various normal loads were applied by indenting the Si tip on the water film for the sliding simulation to evaluate the interplay between the water thin film thickness and the normal load. The results of the simulations showed that the friction force generally increased with respect to the normal load and thickness of the water thin film. The friction coefficient varied with respect to the normal load and the water film thickness. The friction coefficient was the smallest under a moderate normal force and increased with decreasing or increasing normal loads. As the water film became thicker, the contact area between the tip and water film became larger. Under well-lubricated conditions, the friction force was proportional to the contact area regardless of the water film thickness. As the normal force increased above a critical condition, the water molecules beneath the Si tip spread out; thus, the film could not provide lubrication. Consequently, the substrate was permanently deformed by direct contact with the Si tip, while the friction force and friction coefficient significantly increased. The results suggest that a thin water film can effectively reduce friction under relatively low normal load and contact pressure conditions. In addition, the contact area between the contacting surfaces dominates the friction force.