• 제목/요약/키워드: frictional element

검색결과 210건 처리시간 0.025초

열처리 생략강의 인발특성 향상을 위한 윤활제와 피막제의 기계적 거동 고찰 (An Investigation on the Mechanical Behaviors of Lubricant and Coating to Improve the Drawability of Non-heat Treated Steels)

  • 이상준;유위경;이영석;변상민
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.62-67
    • /
    • 2008
  • In this research, we developed a pilot wire-drawing machine as well as wire end-pointing roller. Using these machines, we performed a pilot wire-drawing test at different coating material and lubricant when the reduction ratio is 10 %. To inversely compute the friction coefficient between the coating layer of wire and the surface of die for a specific lubricant, we carried out a series of three dimensional finite element analysis. Results show that the drawing force is varied with the coating material of wire at the same reduction ratio and lubricant. It is noted that the frictional coefficient in drawing is dependent on the coupled property of coating material and lubricant, indicating the best coating material for a given lubricant.

  • PDF

디스크 브레이크에서 열섬 현상이 발생되는 원인과 저더 진동에 미치는 영향 (The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake)

  • 조호준;조종두;김명구;맹주원;이재한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.213-218
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

  • PDF

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.

마찰을 고려한 경편기용 정경빔의 설계에 관한 연구 (A Study on the Design of the Warper Beam Considering Friction)

  • 임문혁;김영규;신현명
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.140-148
    • /
    • 2003
  • An analysis fur the warping process has been performed to design the warper beam. Nonlinear material response is included in the physical model of polyester yarn. Large deformation finite element simulation considering contact and frictional analysis are used to obtain the pressure on the barrel of the warper beam. Loading condition on the flange is assumed by using the pressure on the barrel, winding number of yarn, Poisson's ratio of fiber, and fiber volume fraction. By using the above loading conditions NASTRAN finite element simulation is performed to calculate stress distribution and deformation of the warper beam. By comparing the deformed shape of the flange with experimental result, loading condition on the flange has been obtained. The obtained loading conditions on the barrel and flange can be utilized to design the warper beam.

디스코 브레이크에서 열섬 현상이 발생되는 원인과 저더진동에 미치는 영향 (The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake)

  • 조종두;김명구;조호준
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.886-892
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

유한요소해석을 이용한 응력적층 바닥판의 구조성능평가 (Structural Performance Evaluation on Stress-Laminated Timber Bridge Deck Using Finite Element Analysis)

  • 신유경;엄창득;이상준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권1호
    • /
    • pp.20-26
    • /
    • 2014
  • 본 연구에서는 유한요소해석을 이용하여 응력적층 바닥판의 구조성능을 평가하였다. 바닥판의 구조성능은 처짐과 응력, 압체력의 변화로 평가할 수 있다. 하중 재하 후 바닥판의 처짐 형상을 확인한 결과 하나의 판처럼 거동하는 것을 확인하였다. 이는 압체력에 의해 각 부재 사이에 마찰력이 작용했기 때문이다. 또한 초기 압체력과 산출된 압체력을 비교한 결과 바닥판의 처짐과 함께 압체력이 감소했다. 이는 하중에 의해 바닥판의 변형이 발생하면서 작용하는 힘이 줄어듦에 따라 압체력이 감소한 것으로 판단된다. 그러나 재료의 소성 특성이 제대로 반영되지 않았기 때문에 잔류응력과 잔류변형이 고려되지 않았으므로 추후 이에 대한 연구가 필요하다.

Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

  • Hussein, Mostafa Omran
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.333-340
    • /
    • 2013
  • PURPOSE. This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS. Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS. The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION. There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar.

Optimal Friction Materials of Tiny Piezoelectric Ultrasonic Linear Motor

  • Lee, Kyong-Jae;Nahm, Sahn;Kang, Jin-Kyu;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jae;Yoon, Seok-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.249-255
    • /
    • 2005
  • In recent years, a novel tiny piezoelectric linear motor converting a radial mode vibration to a longitudinal mode vibration driven by the impact force has been developed for a camera optical module. The tiny piezoelectric motor is consisted of a shaft, mobile element, and piezoelectric transducer. In this work, the frictional coefficient and static friction force of the interface between the shaft and the mobile element have been investigated according to their respective materials. It was found that two combinations, namely Pyrex glass or stainless steel for the shaft and stainless steel (SUS) for the mobile element, exhibited good dynamic behaviors in the tiny ultrasonic linear motor, which was newly developed based on operating concepts based on Newton's law.

분리된 원주압 보조 액압유도 역 재드로잉공정에 관한 연구 (Study on the Hydromechanical Reverse Redrawing Pprocess Assisted by Separate Radial Pressure)

  • 김봉종;이동우;양동열;박찬승
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3728-3740
    • /
    • 1996
  • High-quality cups of deep drawing ratio of more than four cannot be simply drawn by conventional drawing and redrawing processes. In the present study, after the first deep drawing process, subsequent hydromechanical reverse redrawing with controlled radial pressure is employed. In order to increase the deep drawing ratio up to muchmore than four, the radial pressure should be controlled independently of the chamber pressure and thus an optimum forming condition can be found easily by varying the radial pressure. The process has been subjected to finite element analysis by using the rigid-platic material modeling considering all the frictional conditions induced by the hydrostatic pressure. In order to consider the pressure effect on the sheet, the pressure distributions on the flange part and the side wall part are calculated mumerically from simplified Navier-stokes equation. The comparison of the computation with the experiment has shown that the finite element modeling can be conveniently emplyed for the design of the process with reliability from the viewpoint of formability.

Transient thermoelastic analysis of carbon/carbon composite multidisc brake using finite element method

  • Ghashochi-Bargh, Hadi;Goodarzi, Mohammad-Saeed;Karimi, Masoud;Salamat-Talab, Mazaher
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.135-149
    • /
    • 2020
  • In the current paper, a generalization of the results of Zhao et al. (2008) on a new design of C/C composite multidisc brake system is presented. The purpose of this paper is to study the effect of thermal sensitivity of Carbon/Carbon (C/C) composite material on the temperature distributions, deformation, and stress during braking. In this regard, a transient temperature-displacement coupled analysis for C/C composite brake discs with frictional heat generation under simulated operating conditions is performed. An axisymmetric model for brake system is used for the finite element analysis according to the theory of energy transformation and transportation. The transient temperature distributions on the friction surfaces, deformation, and stress are obtained. To check the validity, the results are corroborated with other solutions available in the literature, wherever possible. The current study could be used as a guide in the initial design of a high performance multidisc brake system.