• Title/Summary/Keyword: friction-contact method

Search Result 305, Processing Time 0.026 seconds

Head-Disk Interface : Migration from Contact-Start-Stop to Load/Unload

  • Suk, Mike
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.643-651
    • /
    • 1999
  • A brief description of the current technology (contact-start-stop) employed in most of today's hard disk drive is presented. The dynamics and head/disk interactions during a start/stop process are very complicated and no one has been able to accurately model the interactions. Thus, the head/disk interface that meets the start/stop durability and stiction requirements are always developed statistically. In arriving at a solution. many sets of statistical tests are run by varying several parameters. such as, the carbon overcoat thickness. lubricant thickness. disk surface roughness, etc. Consequently, the cost associated III developing an interface could be significant since the outcome is difficult to predict. An alternative method known as Load/Unload technology alters the problem set. such that. the start/stop performance can be designed in a predictable manner. Although this techno¬logy offers superior performance and significantly reduces statistical testing time, it also has some potential problems. However. contrary to the CSS technology. most of the problems can be solved by design and not by trial and error. One critical problem is that of head/disk contacts during the loading and unloading processes. These contact can cause disk and slider damage because the contacts are likely to occur at high disk speeds resulting in large friction forces. Use of glass substrate disks also may present problems if not managed correctly. Due to the low thermal conductivity of glass substrates. any head/disk contacts may result in erasure due to frictional heating of the head/disk interface. In spite of these and other potential problems. the advantage with L/UL system is that these events can be understood. analyzed. and solved in a deterministic manner.

  • PDF

Squeal Analysis of Disc Brake Using Analytical-FE Squeal Model (스퀼융합모델을 이용한 디스크 브레이크 스퀼 소음 연구)

  • Kang, Jaeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6406-6411
    • /
    • 2014
  • This paper presents the analytical-FE (finite element) squeal model, which can provide the efficient simulation time and accuracy. The system geometry and the extraction of the vibration modes were constructed using the finite element method. Instead, the friction contact model was derived from theoretical contact kinematics of the rotating disc and the stationary pads. This modeling procedure was incorporated into the perturbed equations of motion based on the finite elements of the system. Throughout the analytical-FE squeal model, the accuracy of linear stability analysis and the simulation time of FE squeal analysis were improved. In addition, the sensitivity of contact stiffness on brake squeal and the mode-coupling mechanism were provided by the system parameter study.

Investigation on helix type labyrinth seal to minimize leakage flow of cryogen for rotating superconducting machines

  • Yubin Kim;Kihwan Kim;Seungcheol Ryu;Hojun Cha;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • High-temperature superconducting rotors offer advantages in terms of output-to-weight ratio and efficiency compared to conventional phase conduction motors or generators. The rotor can be cooled by conduction cooling, which attaches a cryocooler, and by refrigerant circulation, which uses circulating liquid or gas neon, helium and hydrogen. Recent work has focused on environmental issues and on high-temperature superconducting motors cooled with liquid hydrogen that can be combined with fuel cells. However, to ensure smooth supply and return of the cryogenic cooling fluid, a cryogenic rotational coupling between the rotating and stationary parts is necessary. Additionally, the development of a sealing structure to minimize fluid leakage applicable to the coupling is essential. This study describes the design and performance evaluation of a non-contact sealing method, specifically a labyrinth seal, which avoids power loss and heat load caused by friction in contact sealing structures. The seal design incorporates a spiral flow path to reduce leakage using centrifugal force, and computational fluid dynamics (CFD) simulations were conducted to analyze the flow path and rotational speed. A performance evaluation device was configured and employed to evaluate the designed seal. The results of this study will be used to develop a cryogenic rotational coupling with supply and return flow paths for cryogenic applications.

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes (2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화)

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF

A Study on the Minimum Oil Film Thickness of Crankshaft Main Bearings in Engine (엔진 메인 베어링에서의 최소유막두께에 관한 연구)

  • 최재권;이정현;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.50-63
    • /
    • 1992
  • The minimum oil film thicknesses (MOFT) in the crankshaft main bearings of a 1.5 liter, L-4, gasoline engine are measured and calculated to study the dynamically loaded engine bearing. The MOFT are measured simultaneously at each of the five main bearings using the total capacitance method(TCM). To improve the reliability of the TCM, a reasonable determination method of bearing clearance is introduced and the effects of bearipg cavitation and aeration on the test results are analyzed. Also the crankshaft is grounded by means of a slip ring instead of the friction contact method to improve the test precision. The calculation is based on the model of statically determinate beam, short bearing approximation and Mobility method. From the comparison between the measured and calculated MOFT curves, it is found that a qualitative similarity exists between them, but in all cases, measured MOFT are smaller than that of calculated. The crankshaft vibration and the imbalance of the load distribution between the engine bearings have important influence upon the MOFT curve. So it is found that the calculation result from the model of the statically determinate beam has a limitation in predicting bearing performance.

Evaluation of Thickness Reduction in an Aluminum Sheet using SH-EMAT (SH-EMAT를 이용한 알루미늄 박판의 두께감육 평가)

  • Kim, Yong-Kwon;Park, Ik-Kuen
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, a non-contact method of evaluating the thickness reduction in an aluminum sheet caused by corrosion and friction using SH-EMAT (shear horizontal, electromagnetic acoustic transducer) is described. Since this method is based on the measurement of the time-of-flight and amplitude change of guided waves caused from the thickness reduction, it provides information on the thinning defects. Information was obtained on the changes of the various wave features, such as their time-of-flight and amplitude, and their correlations with the thickness reduction were investigated. The interesting features in the dispersive behavior of selected guided modes were used for the detection of thinning defects. The measurements of these features using SH waves were performed on aluminum specimens with regions thinned by 7.2% to 29.5% of the total thickness. It is shown that the time-of-flight measurement provides an estimation of the thickness reduction and length of the thinning defects.

Study on Deformation and Strength of Fillet Welds (Fillet Welding Joint의 파괴기구(破壞機構)와 강도(强度)에 관한 연구(硏究))

  • Dong-Suk,Um
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.2
    • /
    • pp.27-40
    • /
    • 1970
  • The distribution of stress and strain in elastic stages is investigated by the experiments of two dimensional photoelastic coating and Moire fringe method. Center block type and cover plate type of fillet welds are used as specimens in the test. The results are as follows. 1) Center block type gets less uniform stress distribution than cover plate type. And its stress concentration factor, especially at root, is larger than that at toe. 2) When main plate and cover plate closely contact and it cause friction, stress concentration decreases more than that in case of slit. That is because stress can be transmitted on the contact surface. 3) When slit is made, the outside of fillet gets more stress than the inside of it. 4) While the plastic strain distribution of center block type reaches the maximum at root and differs very slightly from that under lower loading, the plastic strain distribution of cover plate type is inclined to get the maximum at the outside of fillet rather than at root. 5) When the plastic strain value of cover plate type is compared with that of center block type at toe and root, the relations between the former and the latter shows root<toe and root>toe. 6) Because stress distribution becomes changed according to loading, fracture angle cannot be estimated by the peaks of elastic stress distribution. 7) The strain distribution just before fracture can be found by Moire fringe method.

  • PDF

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

Study on Scratch Defect of Roll Forming Process (롤포밍공정에서의 스크래치 결함에 대한 연구)

  • Kim, Nak-Su;Hong, Seok-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1213-1219
    • /
    • 2001
  • In this paper, modeling of the multi-pass roll forming process with the finite element method and defect prediction in roll forming process are presented. In the roll forming process, there occurs the defect of scratch. It appears on tubes because of the friction between the strip and the roll, the unexpected sliding velocity and the contact pressure when fabricating the tubes. The surface of the product will be not uniform due to the defect. The scratch can be predicted with the simulation modeling of the finite element method, and can be avoided by modifying the design.