• 제목/요약/키워드: friction transition region

검색결과 27건 처리시간 0.03초

미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향 (The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측 (Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient)

  • 백성구;정명균;임효재
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.

고난류강도 자유유동에서 평판 경계층 천이의 예측을 위한 난류 모형 개발 (Development of k-$\epsilon$ model for prediction of transition in flat plate under free stream with high intensity)

  • 백성구;임효재;정명균
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-344
    • /
    • 2000
  • A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.

  • PDF

이등변삼각형 단면을 갖는 파이프 내의 Pseudo-Plastic 유체유동에 대한 압력강하의 연구 (Investigation of Pressure Drop for a Pseudo-plastic Fluid Flow in Isosceles Triangle Pipes)

  • 이동렬
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.30-35
    • /
    • 2009
  • Numerical Calculations for dimensionless pressure drop (friction factor times Reynolds number) have been obtained for fully developed laminar flow of MPL(Modified Power Law) fluid in isosceles triangle pipes. The solutions are valid for Pseudoplastic fluids over a wide range from Newtonian behavior at low shear rates through transition region to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which for a given set of operating conditions specifies where in the shear rate range a particular system is operating, i.e., Newtonian, transition or power law region. The numerical calculation data of the dimensionless pressure drop for the Newtonian and power law regions are compared with previously published asymptotic results presenting within 0.16 % in Newtonian region and 2.98 % in power law region.

  • PDF

Power Steering용 베인 펌프의 베인 선단부에서의 마찰특성 (The friction characteristics at vane tip of vane pump for power steering system)

  • 박운성;정석훈;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제11권3호
    • /
    • pp.48-53
    • /
    • 1995
  • In this paper, the friction characteristics of contact region between vane tip and camring is studied using a modeled experimental device. The contact region is under the influence of variable loads with the amplitude of hundreds of Newton and frequency of tens of Hz. The condition of lubrication between vane and disk is modeled after the actual condition between vane and camring. The coefficient of friction is obtained by measuring the frictional forces in the contact region between camring and vane. The friction characteristics of the actual oil hydraulic vane pump is estimated on the basis of coefficient of friction. The analysis of frictional characteristics shows us that the lubrication condition of vane tip is that of transition regime between hydrodynamic lubrication and mixed lubrication.

압력 구배가 없는 평판 천이 경계층 유동을 예측하기 위한 k-$\varepsilon$모형의 개발 (A New k-$\varepsilon$ Model for Prediction of Transitional Boundary-Layer Under Zero-Pressure Gradient)

  • 백성구;임효재;정명균
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.305-314
    • /
    • 2001
  • A modified model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a universal model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity (1%∼6%) under zero-pressure gradient. It was found that the profiles of mean velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily predicted throughout the flow regions.

한국형 기동장비 마찰재의 고온성능 연구 (A Study on the High Temperature Performance of the Brake Materials Built in Korean Model Combat Vehicle)

  • 하상준;정동윤
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.53-60
    • /
    • 2000
  • Organic brake materials are installed in the braking system of korean model combat vehicles. Since the binder resin is decomposed in high temperature region, it may possible to drop the friction force which makes the vehicle stop within the desired distance. This study analyses the braking performance of the brake materials in high temperature region by using the pin-on-disk type friction tester. It is observed radical drop of friction coefficients and rapid increase of wear amounts from the transition temperature. It is due to the formation of oxide layer on the friction surface.

  • PDF

액체배관으로부터 위험물질 누출속도 산정에 관한 연구 (A Study on the Release Rate of Hazardous Materials from Liquid Pipeline)

  • 탁송수;조영도
    • 한국가스학회지
    • /
    • 제6권1호
    • /
    • pp.81-85
    • /
    • 2002
  • 탱크와 연결된 배관에서 원하지 않은 사고로 인해 액체 위험물질의 누출이 발생할 경우 천이영역에서의 누출속도 계산방법을 제시하였다. 배관에서의 액누출에 관한 누출속도는 층류와 난류영역에서 Crowl and Louvar 등이 제시한 모델식을 이용하여 프로그램 또는 직접계산에 의해 이루어지고 있으나, 천이영역에 대한 모델식은 없었다. 따라서 본 논문에서는 Lap-Mou Tam 등이 실험한 천이영역에서 레이놀즈수에 따른 마찰계수 실험값을 이용하여 천이영역에 대한 누출속도 값을 계산하였고 이 값을 층류와 난류에 관한 모델식을 사용한 값과의 비교를 통해 천이영역에서 일반적으로 사용할 수 있는 모델식으로 난류에 관한 모델식으로 계산한 값에 안전율 $30\%$를 추가한 값을 위험평가에 사용할 수 있음을 보였다.

  • PDF

곡관덕트에 연결된 정사각단면 직관덕트에서 증류정상유동의 유동장내 유동특성 (Flow Characteristics of Developing Laminar Steady Flows in a Straight Duct Connected to a Square Curved Duct)

  • 손현철
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.545-553
    • /
    • 2005
  • In the present study, The characteristics of developing steady laminar flows of a straight duct connected to a $180^{\circ}$ curved duct were examined In the entrance region through experimental measurement. Flow characteristics such as shear stress distributions, pressure distributions and friction coefficient experimentally in a square cross-sectional straight duct by using the PIV system. For the PIV measurement by particles produced from mosquito coils particles. The experimental data were obtained at 9 points dividing the test sections by 400mm. Experimental results can be summarized as follows. Critical Reynolds number, $Re_{cr}$ which indicates transition from laminar steady flow to transition steady flow was 2,150. Shear stress per unit length on the wall was stronger than that in the fully developed flow region. This was attributed to the fact that shear stress and pressure loss in the curvature of a duct were increased. Pressure distributions were gradually decreased irrespective of Reynolds number In the whole test section. This trends were in a good agreement with the reference results. Pipe friction coefficient in the steady state flow region was calculate from method of least squares. The co-relationship between fiction coefficient and Reynolds number was established as follow; ${\lambda}=56/Re$.

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF