• Title/Summary/Keyword: friction spring

Search Result 176, Processing Time 0.033 seconds

Development and Performance Test of Solar Sail System for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 태양돛 개발 및 성능시험)

  • Song, Su-A;Kim, Seungkeun;Suk, Jinyoung;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.228-239
    • /
    • 2016
  • CNUSAIL-1 is a 3U-sized cube satellite with $4m^2$ small solar sail which is currently being developed at the Chungnam National University. The primary purpose of the CNUSAIL-1 is successful sail deployment in LEO and its operation for investigating its effect on satellite orbit and attitude as well as performing de-orbiting using the sail membranes as drag sail at the final phase. The system design and mechanism of solar sail deployment is introduced, and optical and tensile tests are carried out for the material of membranes and booms for its safety and performance verification. The ground test is carried out to verify its performance for sail deployment and satellite through comparison between folding methods by determining its folding patterns, thickness of spiral spring and angular velocity measurement in a low-friction environment.

Design of a Novel 3D Printed Harmonic Drive and Analysis of its Application (3D 프린팅 기법을 이용한 하모닉 드라이브(Harmonic Drive) 설계 및 응용 분석)

  • Kim, Sang-Hyun;Byeon, Chang-Sup;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.27-31
    • /
    • 2022
  • Harmonic drives have attracted increasing attention with the development of materials, parts, and related equipment. Harmonic drives exhibit high deceleration, high accuracy, and light weight. The stiffness of flexible splines according to the radial load is studied using a commercial FEM program to design the structure of the flexible spline and finite element to improve the weight and price competitiveness of harmonic drives. In addition, several studies have measured and compared friction coefficients based on 3D printed tread patterns. However, owing to the characteristics of plastic materials, a decrease in stiffness in the radial direction is inevitable. To prevent a decrease in stiffness in the radial direction, we designed and manufactured flex splines with a wrinkle shape. Through structural analysis, the reaction force and stiffness in the radial direction were determined. In addition, the maximum angle of the mound was derived by theoretical calculations, and the performance of the harmonic drive was compared with the results obtained in the mound experiment. Structural analysis shows that the shape of wrinkles decreased the stress and reaction force and increased the safety factor in comparison with that of the circular shape. During performance verification through continuous experiments, the developed harmonic drive showed continuous performance similar to that of an actual tank model. It is expected that the flex spline with a compliant spring and wrinkle shape will prevent a decrease in the radial stiffness.

Distribution Characteristics of Fish Schools in the Yellow Sea and the East China Sea in the Spring of 1997 (1997 년 춘계의 동중국해 및 황해에 대한 어군의 분포특성)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.241-248
    • /
    • 2002
  • The combined hydroacoustic and demersal trawl surveys to investigate the distribution characteristics of fish schools in the Yellow Sea and the East China Sea were carried out during the spring of 1997 by the training ship "Nagasaki Maru" of Nagasaki University. Fish samples were collected by bottom trawling from 9 trawl stations randomly selected in the survey area, and the species and length compositions of trawl catches are examined. Hydroacoustic data were collected by using a Furuno FQ-50 scientific echo sounder operating at 50KHz and the data stored in field were later processed in the laboratory. The results obtained can be summarized as follows :1. In the 9 trawl surveys conducted in the Yellow Sea and the East China Sea, 78 species including 80 species of fishes, 4 species of Cephalopoda and 6 species of Crustacea, were identified. The most abundant species in these stations were swimming crab(Portunus trituberculatus), Japanese horse mackere(Trachurus japonicus), redlip croaker(Larimichthys polyactis) and the catch per one hour in each station ranged 7.7 to 182.5 kg/hour. 2. The mean volume backscattering strength for the entire water column and the bottom layer of the 0-10 m from bottom friction were -74.6 ㏈ and -68.2 ㏈, respectively. That is, the mean volume backscattering strength for the bottom layer was 6.4 ㏈ higher than that for the entire water column 3. In the surveys during the spring of 1997, the geographical distribution characteristics of fish schools suggests a trend of decreasing fish abundance toward the coast area of Korea and the highest demersal concentrations appeared in waters between the Cheju Island and the Tsushima Island 4. The distribution density of fish school in the East China Sea and Yellow Sea during the 1997 acoustic survey were estimated to be 6.65$\times$10$^{-5}$ kg/㎥ in the entire water column and 2.86$\times$l0$^{-4}$ kg/㎥ in the bottom layer, respectively.pectively.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Dynamic Behaviors of a Bridge under Seismic Excitations Considering Stiffness Degradation with Various Abutment-Soil Conditions (교대인접토체의 특성에 따른 강성저하를 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;경규혁;이상우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.347-354
    • /
    • 2000
  • The seismic behaviors of a bridge system with several simple spans are examined to see the effects of the longitudinal stiffness degradation due to abutment-soil interaction. The abutment-backfill system is modeled as one degree-of-freedom-system with nonlinear spring and linear damper. various soil-conditions surrounding the abutment such as loose sand, medium dense sand, and dense sand are considered in the bridge seismic analysis. The idealized mechanical model for the whole bridge system is modeled by adopting the multiple-degree-of-freedom system, which can consider components such as pounding phenomena, friction at the movable supports, rotational and translational motions of foundations, and the nonlinear pier motions. The stiffness of the abutment is found to be rapidly reduced at the beginning of the earthquakes, and to be converged to constant values shortly after the displacement approaches to the Predefined critical values. It is observed that the maximum relative distanced an maximum relative displacements are generally Increased as the relative density of a soil decreases As the peak ground acceleration increases, the response ratio of the case considering stiffness degradation to the case considering constant stiffness decreases.

  • PDF

Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts (차량 저속 추돌의 연속 접촉력 모델)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber (전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Im, Jae-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

Design of the Actuator of Shaft Sliding Type for an Optical Pick-up to Switch an Objective Lens (대물렌즈 전환식 축습동형 광학픽업용 엑츄에이터 설계)

  • Choi, Young-Suk
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.32-41
    • /
    • 1999
  • The design method that the structure of double actuators of read-only or read-writable DVD optical pick-up of high density can be compact into the structure of one actuator, is proposed. The designed actuator has the structure of the shaft sliding type in which the moving part can be rotated about the shaft accord to a used optical disc and an objective lens can be switched, and is suspended with magnetic spring. In this actuator, Coulomb's friction is used as damping force and the moving part is designed by finite element method so that the second natural vibration mode can not occur within the servo band. The mock-up of the actuator designed in this paper is made, and its dynamic characteristics is measured and estimated.

  • PDF

Design of a Digital Robust Control Using Observer for Manipulator (관측기를 이용한 강인한 디지털 로보트제어)

  • 이보희;김진걸
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2353-2363
    • /
    • 1994
  • This paper is concerned with the design of a robust digital controller using reduced-order observer on a robotic manipulator under the disturbance. In most cases of robotic manipulator since all state vectors are not measurable, the unmeasurable state vectors must be estimated or reconstructed. Other problems are caused by the nonlinear element like as nondifferentiable Coulomb friction, disturbance due to the gravitational pull, and the torsional spring effect of a link between the drive motor and the manipulator arm. The controller is based on feeding back the observable variables and the estimated state variables which are generated by the observer, and augmenting the system by additional discrete integrators. The feedback gain parameters are obtained by first applying the optimal control theory and then readjusting the feedback parameters to eliminate the limit cycle by using describing Function for nonlinear hybrid system.

  • PDF