• 제목/요약/키워드: friction mode

검색결과 320건 처리시간 0.028초

리니어모터 스테이지 진직도 향상을 위한 서보 시스템 계발 (Development of a Servo-system for Straightness Improvement of Linear Motor Stages)

  • 최정덕;강민식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.33-39
    • /
    • 2005
  • In this paper, we propose a slider servo-mechanism driven by electro-magnetic actuator to improve straightness of linear motor stages. Based on axial-position dependent deterministic characteristics of the straightness error, a feedforward compensation control is appled to reduce the straightness error. In the consideration of uncertain properties of friction and its effects on positioning accuracy, a sliding mode control is applied. The effectiveness of the suggested mechanism and the control performances are illustrated along with some experimental results.

리니어모터 스테이지 진직도 향상을 위한 서보 시스템 개발 (Development of Servo-system for Straightness Improvement of Linear Motor Stage)

  • 강민식;최정덕
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.530-536
    • /
    • 2004
  • In this paper a servo-system is developed to improve straightness of linear motor stages. When a linear motor stage is used for high-precision linear motion systems, high precision straightness accuracy is necessary to meet the required position accuracy. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to the friction, a sliding mode control is applied. The effectiveness of the suggested mechanism and the control performance are illustrated along with some experimental results.

  • PDF

캘리퍼 접촉강성을 고려한 브레이크 스퀼 해석 (Brake Squeal Analysis with Respect to Caliper Contact Stiffness)

  • 남재현;강재영
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.717-724
    • /
    • 2013
  • The present study provides the numerical results in association with caliper stiffness and friction curve. From the numerical results, it is concluded that the pad vibration modes with dominant displacement in rotation direction is sensitive in the flutter instability. Particularly, the pad rigid mode is shown to become the squeal mode when the caliper stiffness is introduced in brake squeal model. Therefore, the caliper contact stiffness between the pad and caliper is expected to contribute to the squeal modes of the brake pad.

마찰을 고려한 버터플라이 밸브의 강인 제어기 설계 (Design of a Robust Controller for the Butterfly Valve with Considering the Friction)

  • 최정주
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.824-830
    • /
    • 2013
  • We propose a tracking control system for butterfly valves. A sliding mode controller with a fuzzy-neural network algorithm was applied to the design of the tracking control system. The control scheme used the real-time update law for the unmodeled system dynamics using a fuzzy-neural network algorithm. The performance of the proposed control system was assessed through a range of experiments.

Positioning an Elastic Arm by Using Fuzzy Methods

  • Feeny, Brian
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1203-1206
    • /
    • 1993
  • Fuzzy techniques are applied to the positioning of an elastic beam. The advantage is that the system model is not needed. A simple fuzzy friction compensator is also used. The final position is achieved within 3/2 the period of the fundamental mode. A fuzzy set of rules is applied for large-angle positioning, with adaptations that reduce the effects of shock. In this case, the final position is achieved within two fundamental periods. There is typically some final error attributed to the dry friction.

  • PDF

Nano-scale Friction Properties of SAMs with Different Chain Length and End Groups

  • ;윤의성;한흥구;공호성
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.13-16
    • /
    • 2005
  • Friction characteristics at nano-scale of self-assembled monolayers (SAMs) having different chain lengths and end groups were experimentally studied.51 order to understand the effect of the chain length and end group on the nano-scalefriction: (1) two different SAMs of shorter chain lengths with different end groups such as methyl and phenyl groups, and (2)four different kinds of SAMs having long chain lengths (C10) with end groups of fluorine and hydrogen were coated on siliconwafer (100) by dipping method and Chemical Vapour Deposition (CVD) technique. Their nano-scale friction was measuredusing an Atomic Force Microscopy (AFM) in the range of 0-40 nN normal loads. Measurements were conducted at the scanning speed of 2 $mu$m/s for the scan size of 1$mu$m x 1 $mu$m using a contact mode type $Si_3N_4$ tip (NPS 20) that had a nominal spring constant0.58 N/m. All experiments were conducted at anlbient temperature (24 $pm$1$circ$C) and relative humidity (45 $pm$ 5%). Results showedthat the friction force increased with applied normal load for all samples, and that the silicon wafer exhibited highest frictionwhen compared to SAMs. While friction was affected by the inherent adhesion in silicon wafer, it was influenced by the chainlength and end group in the SAMs. It was observed that the nano-friction decreased with the chain length in SAMs. In the caseof monolayers with shorter length, the one with the phenyl group exhibited higher friction owing to the presence of benBenerings that are stiffer in nature. In the case of SAMs with longer chain length, those with fluorine showed friction values relativelyhigher than those of hydrogen. The increase in friction due to the presence of fluorine group has been discussed with respect tothe siBe of the fluorine atom.

마찰곡선을 반영한 인공 고관절 마찰소음 유한요소 해석연구 (Investigation of Hip Squeak Using Finite Element Modeling with a Friction Curve)

  • 남재현;박기완;강재영
    • 대한기계학회논문집A
    • /
    • 제40권1호
    • /
    • pp.33-39
    • /
    • 2016
  • 본 논문은 복소수 고유치해석을 통하여 세라믹-세라믹 인공고관절 시스템에서의 동적 불안정성을 연구하고자 하였다. 시스템 파라메터 연구를 통해서 모드 연성 기반의 불안정성을 연구하였고, 음의 기울기를 포함하는 유한요소 해석 모델을 구현하여 음의 기울기에 의한 불안정성에 대해 조사하였다. 그 결과 토션이 지배적인 시스템 모드가 음의 기울기에 의해 불안정해 지며, 이는 축하중에 크게 영향을 받는다는 점을 확인하였다.

잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어 (Robust Control of an Anti-Lock Eddy Current Type Brake System)

  • 이갑진;박기환
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael;Bohm, Stefan;Schuddekopf, Sven
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.22-28
    • /
    • 2014
  • Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.

마찰감쇠기가 있는 블레이드디스크의 강제진동해석 (Forced Response Analyses of a Bladed Disk with Friction Dampers)

  • 유재한;이인
    • 한국추진공학회지
    • /
    • 제14권5호
    • /
    • pp.15-23
    • /
    • 2010
  • 블레이드 디스크에는 진동 저감을 위해 종종 마찰 감쇠기가 같은 부가적인 감쇠 요소가 부착된다. 마찰 감쇠기가 있는 블레이드 디스크의 강제 진동 해석 시스템이 개발 및 검증되었다. 비선형 진동 해석 방법인 다중 조화 방법과 주기 구조물의 효율적인 해석을 위한 주기 경계 조건이 사용되었으며 집중된 구조 비선형성인 마찰 감쇠기가 있는 구조물의 거동을 모사하기 위하여 가상 질량법으로 얻어진 모드 형상이 사용되었다. 이러한 모드와 일반적인 고유 모드의 상대적인 수렴성이 비교되었다.