• Title/Summary/Keyword: friction loss.

Search Result 548, Processing Time 0.027 seconds

Thermal Characteristics and Friction and Wear Characteristics of Phenolic Resin and Friction Material with the Content of Acrylonitrilebutadienerubber (Acrylonitrilebutadienerubber의 함량에 따른 페놀수지 및 마찰재의 열특성 및 마찰 .마모 특성)

  • Kim, Chang-Jea;Jang, Ho;Yoon, Ho-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.114-114
    • /
    • 2001
  • The thermal and friction characteristics of phenolic resin and model friction materials were investigated with the content of acrylonitrilebutadienerubber(NBR). The thermal characteristics of material was performed by dynamic mechanical thermal analysis and differential scanning calorimetry. The friction and wear characteristics of the material were determined by using friction material testing machine. The results show that with the more content of rubber, the loss modulus of friction material was increased. The friction coefficient and the specific wear rate with various NBR contents were reported.

  • PDF

A study on the flow resistance in the various fittings for non-newtonian fluid (비뉴우튼유체의 관이음음 유동저항에 관한 연구)

  • ;;Kim, Chun Sik
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.151-157
    • /
    • 1979
  • An experomental study on drg reduction in the rough tubes is presunted using the drrective drag reducing proymer solutions. The friction factors of the rough tubes follow the maximum drag reduction asymptote for the lower Reynolds numbers in the turbulent flow. However, as the Reynols number is increased the rougher tube results deviate from the maximum drag rduction asymptote sooner than the less rough tube results. There appears a systematic deviation from the maximum drag reduction asymptote depending on the relative roughness just as friction factors for the Newtonian hluid inthe rough tubes exhibit in the turbulent region. The minor loss results inthe various fittings such as elbows, tees, and gate valves are presunted The fittings show higher values of the loss coefficient in the drag reducing polymer solutions than in the Newtonian fluid, which is quite contrary to the drag reduction phenomenon in the straight tubes. The eqivalent length of the fittings for the drag reducing polymer solutions is many times longer than that for Newtonian fluids due to the increase of the loss coefficient and the decrease of the friction factor. It is speculated that the solid-like behavior of the polymer solutions in the abruptly changing folw passage plays a significant role in increasing the loss coefficient.

Performance Prediction of Centrifugal Compressors (원심 압축기의 성능 예측)

  • 오형우;정명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.136-148
    • /
    • 1997
  • The present study has been carried out to develop a computational procedure for the analysis of the off-design performance in centrifugal compressors with vaneless diffusers by integrating empirical loss models and analytical equations. Losses in centrifugal compressors stem from a number of sources and their exact calculation is not yet possible. This study investigates several modeling schemes and shows that a fairly good prediction can be achieved by a proper selection of the most important flow parameters resulting form a meanline one-dimensional analysis. The performance maps for compressors are calculated and compared with measured performance maps. The off-design performance characteristics in terms of the pressure ratio vs. mass flow produced have generally correct forms. However, no universal means have been found to predict accurately the onset of surge. The prediction method developed through this study can serve as a tool to ensure good matching between parts and it can assist the understanding of the operational characteristics of general purpose centrifugal compressors.

  • PDF

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Han-Jong;Cho, Yong-Il;Cho, Sang-Won;Lee, Jae-Keun;Park, Min-Chan;Kim, Dae-Jin;Lee, Kwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

Finite Element Analysis of Contact Behavior Characteristics in LPG Filling Unit Depending on Multi-ball/Cylinder Rolling Friction Motions (LPG 충전기에서 다수 볼-실린더의 구름마찰운동에 따라 달라지는 접촉거동특성에 관한 유한요소해석)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, the contact stress and friction force between multi-balls and rolling friction contact surfaces of two cylinders have been presented using a finite element analysis. The multi-balls for a rolling friction motion may be contacted with a reciprocating mechanism of a parallel cylinder and a misaligned cylinder in a LPG filling unit. The FEM computed results indicate that SiC ceramic and SUS 304 balls show a high contact stress and friction force on the contact spot of rolling balls. But the PEEK balls show a low contact stress and friction loss due to a high flexibility of a PEEK polymer. In this study, we may recommend SiC and SUS 304 balls for high compressive loadings between a multi-ball and a cylinder contact mechanisms and PEEK balls for a low compressive force. And the misalignment between two cylinders should be restricted for a low contact stress and friction loss, especially.

  • PDF

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Ahn, Young-Chull;Lee, Jung-Eun;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Kim, Dong-Han;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with n mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear Lising nano-oil is evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oilenhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Friction loss of multi-purpose stormwater tunnel simulated by Flow 3D (Flow 3D를 이용한 다목적 수로 터널의 마찰 손실 산정)

  • Lee, Du Han;Kim, Jung Hwan;Chung, Gunhui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.14-21
    • /
    • 2017
  • The extreme floods recently are have been attributed global warming, The development of a canal tunnel to prevent floods by making a bypass or undercurrent to flood discharge in a major flooding area is required because urban flooding in heavy rainfall occurs frequently, increasing the impermeability according to lack of capacity in sewage to urbanization by the existing urban basin. In this study, a numerical simulation was performed to support design standards for a multi-purpose waterway tunnel combined road tunnel of canal tunnel. The numerical simulation showed that the size of the friction loss occurring in the tunnel section of the same channel occurred more than the theoretically calculated frictional loss derived from the numerical simulations. This is probably due to the additional frictional loss caused by the change in the flow structure due to the geometry of the pipe when the shape of the channel is non-circular. The increase in friction loss was more pronounced in the laminar flow than in the turbulent flow. Depending on the shape of the conduit, the friction loss should be adjusted for accurate flow calculations. This result can provide the basin information about the design of flood by a pass conduit.

Friction Characteristics of the Piston-Ring Assembly Varying Engine Operation Coditions (운전조건변화에 따른 피스톤-링 결합체 마찰특성)

  • 윤정의;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1510-1519
    • /
    • 1994
  • It is important to understand the friction characteristics between piston-ring assembly and cylinder wall for the friction loss reduction as well as the solution of problem such as scuffing wear and oil consumption. A new system was developed for the piston-ring assembly friction force measurement. This system was applied to the friction force measurement to find its functional relationship with variables such as engine speed, oil viscosity, and engine load. The friction mean effective pressure(fmep) was found to have a linear relationship with$(\vpsilon{U})^{0.42}$ under motering and with$(\vpsilon{U})^{0.45}$ under firing operations, where $\vpsilon$ is the kinematic oil viscosity and U is mean piston speed.

A Study on the Friction Characteristics of Tappet by Low Friction Coating (저마찰 박막코팅 적용 타펫 부품의 마찰 특성에 관한 연구)

  • Seo, Joon-Ho;Lim, Dae-Soon;Na, Byung-Chul
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.265-269
    • /
    • 2009
  • The wear of the contact in the tappet accounts for the greatest portion of entire friction loss of an engine, leading to the occurrence of abnormal wear. The coated specimens for earn-tappet wear test were producted by using PVD-Sputtering coating method. It examined the friction characteristics occurring between the earn and the tappet by using the dedicated wear tester and found that the friction torque value was reduced through comparison testing with the existing part when the low friction coating was applied. So application of the low friction coating to actual vehicles will reduce the fuel economy and occurrence of noise-vibration.

Development of a Basic Program for the Study of Piston-Ring Pack (피스톤-링 팩 연구를 위한 기초 프로그램 개발)

  • Chun Sang Myung;Ha Dae-Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.149-157
    • /
    • 2004
  • A Piston assembly is very important because it directly receives the energy generated during combustion process. Surely, the friction and lubrication of piston ring pack do an important role in the performance and fuel economy of an engine. in fact, the friction loss in piston ring pack is the biggest portion to the whole engine friction. Therefore, the improvement of lubrication quality and friction loss in piston ring pack will be directly related with the improvement in the performance and fuel economy of an engine. Meanwhile, the oil consumption and blow-by gas through piston-cylinder-ring crevices have to be controlled as less as possible. In these two aspects, the study on the optimized design of piston ring pack has to be carried out. In this study, for the efficient design of piston ring pack, it is focused to develop a basic computer program that predicts the inter-ring pressure, the motion of ring and the blow-by gas through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories.

  • PDF