• 제목/요약/키워드: friction identification

검색결과 83건 처리시간 0.027초

마찰력 식별과 보상을 통한 운동제어 시스템의 성능 개선 (Performance Enhancement of Motion Control Systems Through Friction Identification and Compensation)

  • 이호성;정소원;류성현
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes a method for measuring friction forces and creating a friction model for a rotary motion control system as well as an autonomous vehicle testbed. The friction forces versus the velocity were measured, and the viscous friction, Coulomb friction, and stiction were identified. With a nominal PID (proportional-integral-derivative) controller, we observed the adverse effects due to friction, such as excessive steady-state errors, oscillations, and limit-cycles. By adding an adequate friction model as part of the augmented nonlinear dynamics of a plant, we were able to conduct a simulation study of a motion control system that well matched experimental results. We have observed that the implementation of a model-based friction compensator improves the overall performance of both motion control systems, i.e., the rotary motion control system and the Altino testbed for autonomous vehicle development. By utilizing a better simulation tool with an embedded friction model, we expect that the overall development time and cost can be reduced.

마찰력 규명을 통한 상한절환 오차 모델링 (Quadrant Protrusion error Modeling Through the Identification of Friction)

  • 김민석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.371-376
    • /
    • 1999
  • Stick-slip friction is present to some degree in almost all actuators and mechanisms and is often responsible for performance limitations. Simulation of stick-slip friction is difficult because of strongly nonlinear behavior in the vicinity of zero velocity. A straightforward method for representing and simulating friction effects is presented. True zero velocity sticking is represented without equation reformulation or the introduction of numerical stiffness problems. Stick-slip motion is investigated experimentally, and the fundamental characteristics of the stick-slip motion are clarified. Based on these experimental results, the characteristics of static in the period of stick and kinetic friction in the period of slip are studied concretely so as to clarify the stick-slip process.

  • PDF

2-축 자이로 안정화 김발 시스템의 외란보상 앞먹임 제어를 위한 실험적 2-축 외란 동시 식별 (A Simultaneous Experimental Disturbances Identification of Gyro Stabilized 2-Axes Gimbal System for Disturbance Feedforward Compensation Control)

  • 여성민;강민식
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.508-519
    • /
    • 2018
  • This paper concerns on stabilization control of a gyro-stabilized 2-axes gimbal system which is mounted on a moving vehicles such as automobiles, armored vehicles, ships, flying vehicles, etc. A target image acquisition system is attached on the inner gimbal, and the gimbal systems are required to retain high stabilization accuracy in the absolute coordinate in order to provide fine target image while vehicle is moving. The stabilization control performance is hardly depended upon disturbance rejection ability of control, and disturbance feedforward compensation is effective because feedforward compensation reduce the amount of disturbance before the disturbance disturbs the systems. This paper suggests an experimental method which can estimate system parameters and disturbance torques by using 3-axes accelerometer mounted on the inner gimbal. Furthermore, a simple disturbance identification method which can be applied to any slanted base conditions has been suggested to identify mass unbalance vector and friction torques of each gimbal simultaneously. By using the estimated parameters, a feedforward compensation has been applied to the gyro-stabilized 2-axes gimbal system. The experimental results showed that the feedforward compensation based on the identification method suggested is effective to improve stabilization performances.

관측기를 이용한 노면과 타이어 간의 마찰계수 추정 (Estimation of Tire-Road Friction Coefficient using Observers)

  • 정태영;이경수;송철기
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.722-728
    • /
    • 1998
  • In this paper real-time estimation methods for identifying the tire-road friction coefficient are presented. Taking advantage of the Magic Formula Tire Model, the similarity technique and the specific model for the vehicle dynamics, a reduced order observer/filtered-regressor-based method is proposed. The Proposed method is evaluated on simulations of a full-vehicle model with an eight state nonlinear vehicle/transmission model and nonlinear suspension model. It has been shown through simulations that it is possible to estimate the tire-road friction from measurements of engine rpm, transmission output speed and wheel speeds using the proposed identification method. The proposed method can be used as a useful option as a part of vehicle collision warning/avoidance systems and will be useful in the implementation of a warning algorithm since the tire-road friction can be estimated only using RPM sensors.

  • PDF

비선형 구조물의 매개변수 규명 (Parameter Identifieation of Nonlinear Structure)

  • 김우영;황원걸;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.363-368
    • /
    • 1993
  • Hilbert Transform has been used for detection of nonlinearity in modal analysis. HTD(Hilbert Transform Describers) are used to quantify and identify nonlinearity. Mottershead and Stanway method for identification of N-th power velocity nonlinear damping are extended to P-th power displacement stiffness, N-th power velocity damping and dry friction. Time domain and frequency domain data are used and HTD and Mottershead methods are combined for identification of nonlinear parameters in this paper. Computer simulations and experimental results are shown to verify nonlinear structure identification methods.

  • PDF

마찰감쇠기-가새 시스템의 확률분포 기반 등가선형화에 관한 실험적 연구 (Experimental Study on the Probability-based Equivalent Linearization of a Friction Damper-Brace System)

  • 강경수;박지훈
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.394-403
    • /
    • 2006
  • A new equivalent linearization technique is proposed for a friction damper-brace system (FDBS) idealized as a elastoplastic system. The equivalent linearization technique utilizes secant stiffness and dissipated energy defined by the probability distribution of the extremal displacement of the FDBS. In addition, a conversion scheme is proposed so that an equivalent linear system is designed first and converted to the FDBS. For comparative study, an existing model update technique based on system identification is modified in a form appropriate to update single element. For the purpose of verification, shaking table tests of a small scale three-story shear building model, in which a rotational FDBS is installed, are conducted and equivalent linear systems are obtained using the proposed technique and the model update technique. Complex eigenvalue analysis is conducted for those equivalent linear systems, and the natural frequencies and modal damping ratios are compared with those obtained from system identification. Additionally, RMS and peak responses obtained from time history analysis of the equivalent linear systems are compared with measured ones.

마멸분 형태식별을 위한 신경회로망의 적용 (Shape Identification of Wear Debris with Neural Network)

  • 조연상;박일현;박흥식;전태옥
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.25-32
    • /
    • 1997
  • The neural network was applied to identify wear debris generated from the lubricated machine moving surface. The wear test was carried out under different experimental conditions. In order to describe characteristics of debris of various shapes and sizes. The four parameter(50% volumetric diameter, aspect, roundness and reflec- tivity) of wear debris are used as inputs to the network and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by neural network.

  • PDF

Analysis of a Chip Mounting System for Force and Impact Control

  • Lee, Duk-Young;Cho, Hyung-Suck;Shim, Jae-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.139.2-139
    • /
    • 2001
  • This paper presents identification and control of a surface mounting system. The mount head of the system is modeled to analyze its dynamic characteristics, which is critical to the placement performance of the mounter. Based on this model, an identification work is carried out to estimate the modeled parameters by using genetic algorithm (GA), which plays a role of minimizing an error between the actual response and the model response. Having obtained the identified parameters, we design a disturbance observer control to compensate the friction. The disturbance observer can estimate the friction force and the uncertainty of the system. From the experimental results, it is found that the proposed disturbance observer plus PID controller show a better performance than PID controller alone. In order to accomplish a stable contact content control for fast mounting a ...

  • PDF

전동기 제어시스템 기계정수의 점근적 추정에 관한 연구 (A Study on Successive Approximation Measurement of Mechanical Parameters for Motor Control System)

  • 안종건;박승규;안호균
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.138-141
    • /
    • 2001
  • This paper presents a study on successive approximation measurement of mechanical parameters for motor control system. At the first step of servo system installation, control system gain tuning is troublesome work. Recently, autotuning method of motion controller for motor drive system is based on parameter measurement and identification. On the case of first order mechanical system (mechanical parameters are modified by simple inertia and friction), it is necessary for good response to get the accurate measurement or identification of the mechanical parameters . In this paper, novel method applies the binary successive approximation measurement to the inertia and friction coefficient. Computer simulation and experiment for the proposed method will show verification of accuracy and usefulness.

  • PDF