• Title/Summary/Keyword: friction forces

Search Result 492, Processing Time 0.023 seconds

Practical Semiactive Control of Hydropnematic Suspension Units (유기압 현수장치의 반능동 제어 구현에 관한 연구)

  • 이윤복;송오섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.9-21
    • /
    • 2003
  • This paper describes the practical implementation of a semiactive hydropneumatic suspension system to provide the high off-road performance of military tracked vehicles. Real gas behavior of a spring system, frictional forces of joints, and the dynamics of a continuously variable damper are considered. The control system is consisted of two control loops, an outer loop calculates a target spool position which can deliver the required damping force and an inner loop tracks the required spool position. Dynamic tests of the one axis model show that the semiactive suspension system considerably reduces the acceleration as well as velocity and displacement of the sprung mass than the passive one.

Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어)

  • Jang, Ji-Seong;Han, Seung-Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

Analysis of the Snake Motion of a Machine Tool Cross Head Assembly Travelling on Parallel Linear Motion Guides Using a Planar 2-D.O.F. Model (평면 2자유도 모델을 이용한 LMG 상에서 이동되는 Cross Head의 사행동 해석)

  • 최영휴;김성훈;정택수;장은성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.111-116
    • /
    • 2001
  • In this paper, a simple 2 D.O.F. planar motion model is proposed in order to analyze the snake motion of a machining center cross head assembly, that is travelling on linear guide rails. In the proposed mathematical model, the friction between head and guide ways is neglected, and also the support structures including guide rails, rear- and side-panels of the machining center are assumed to be rigid. The equations of motion of the proposed model are derived and successfully solved to determine vibration responses of the head assembly due to some applied traction forces.

  • PDF

Contact-free Linear Actuator Using Active Magnetic Bearing (능동 자기 베어링을 이용한 비접촉식 선형 구동기)

  • 이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.91-98
    • /
    • 2003
  • In the field of precision manufacturing demanding high positioning performance, the mechanical friction in positioning device deteriorates the quality of the product and increases the cost of production for positioning devices. Therefore, we propose a contract-free linear actuator using active magnetic bearing. The structure and operating principle of the proposed system are explained, and the magnetic forces are analyzed by magnetic circuit theory to design magnetic bearings and linear actuator. With the derived equation of motion, the stability is identified. Experimental results are presented to show the feasibility.

Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft by n Finite Bearing Model (유한 베어링 모델링을 이용한 왕복동형 압축기 크랭크축의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.402-410
    • /
    • 2002
  • In this study, a hydrodynamic analysis of the reciprocating compressor crankshaft considering a finite bearing modelling of the journal bearings used in small refrigeration compressors is performed. In the problem formulation of the compression mechanism dynamics, all corresponding hydrodynamic forces and moments are considered using the finite bearing analysis in order to determine the crankshaft trajectory at each step. The solution of the Reynolds' equation is determined numerically using a finite difference method and a Newton-Raphson procedure was employed in solving the dynamic equations of the crankshaft. The crankshaft orbits fur the finite bearing model and short bearing theory were used to compare the effect of the hydrodynamic farces of the journal bearings on the dynamic and lubrication characteristics of the crankshaft-journal bearing system. Results show that the finite bearing model for the journal bearings must be considered in calculating for the accurate dynamic characteristics of the reciprocating compressor crankshaft.

The Maximum Needle Piercing Force through Fabrics Dyed with Loess (황토염색직물의 최대침관통력)

  • 장정대
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.7
    • /
    • pp.971-979
    • /
    • 1999
  • The experiment was conducted on five different kinds of fabrics dyed with loess. The sewability of fabrics dyed with loess by measuring the maximum needle piercing forces(MPF) through fabrics has been studied, MPF measurement using tensile tester was done 60 times for each fabrics at fixed low speed of 300mm/min. The nature of the loess on the dyed fabrics was physically jammed betweenthe fibers or adhered to the surface of fibers in the form of the fine particles so that the MPF through fabrics increases extremely in proportion to the increase of loess uptake and the plying number of fabrics dyed with loess. This results indicate that the MPF through fabrics is affected by mean value of the coefficient of friction on the surface of fabric(MIU) and cloth cover factor(Kc) in this experiment. Fabric was finished with softner to decrease the MPF during sewing operation, The MPF through softner finished fabric was decreased remarkably.

  • PDF

Optimal Force Distribution for Quadruped Walking Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇을 위한 최적 힘 배분)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.614-620
    • /
    • 2009
  • The force distribution in multi-legged robots is a constrained, optimization problem. The solution to the problem is the set points of the leg contact forces for a particular system task. In this paper, an efficient and general formulation of the force distribution problem is developed using linear programming. The considered walking robot is a quadruped robot with a locked-joint failure, i.e., a joint of the failed leg is locked at a known place. For overcoming the drawback of marginal stability in fault-tolerant gaits, we define safety margin on friction constraints as the objective function to be maximized. Dynamic features of locked-joint failure are represented by equality and inequality constraints of linear programming. Unlike the former study, our result can be applied to various forms of walking such as crab and turning gaits. Simulation results show the validity of the proposed scheme.

Analytic Study on the Axial Forces of a Double Offset Constant Velocity Joints in Consideration of Friction Effect (마찰을 고려한 이중 오프셋 등속조인트의 축력 해석에 관한 연구)

  • Bae, Byoung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.120-127
    • /
    • 2008
  • The constant velocity joint(CVJ) used for transmitting torque to the front wheels is an important part in automotive drive system. There are several types of constant velocity joints. Typically, they are classified by fixed and plunging constant velocity joints. The axial force generated in plunging constant velocity joints influences significantly the noise, vibration and harshness. For heaps of time, many constant velocity joint markers have been studying and developing a valid method to reduce the axial force and extensive tests have been carried out on rigs. This paper presents the analysis method to predict the axial force of a double offset constant velocity joint(DOJ), a kind of plunging constant velocity joint, and the influence of ball-cage dimension tolerance on the axial force.

Interrelationship Between the Drift-flux Model and the Two-fluid Model (드리프트 플럭스 모델과 2-유체 모델 사이의 상관 관계)

  • No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.233-236
    • /
    • 1993
  • For one-dimensional two-phase flow without phase change and without axially-temporally rapid change of pressure, the interrelationship between the drift-flux model and the two-fluid model is studied. It is derived on the basis of the fact that the vapor conservation equation is related to the momentum equation by the drift flux. Starting from the two-fluid model, we obtain the interfacial friction expressed in terms of drift-flux parameter. Also, by deriving the void propagation equation, the drift-flux is shown to have jnterrelationship with forces in the two-fluid model.

  • PDF

Design of A Force-Reflecting Device and Embedded Controller

  • Kim, Dae-Hyun;Moon, Cheol-Hong;Choi, Han-Soo;Kim, Yeong-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2397-2401
    • /
    • 2005
  • It is well understood that force reflecting coupled with visual display can be an important two-way communication channel in human-computer interaction. In this work, important components for a high-fidelity system bandwidth are force reflecting device and that all the computations including contact determination and response computation have to be performed in less than a millisecond. This paper describes a force-reflecting device and an embedded controller. The realized force-reflecting device is based on a novel serial type mechanical structure, and features compactness, high sustained output force capability, low friction, zero backlash, and enough workspace. The embedded controller reduces software computational load via main processor and simplifies hardware strictures by the time-division control. The device is integrated with existing dynamic simulation algorithms running separate workstation, so that objects can be manipulated in real time and the corresponding forces felt back by the operator.

  • PDF